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NOTATION

A An inertia coefficient defined by Equation [52]

a Radius of a circular plate

B An inertia coefficient defined by Equation [34a]

c Speed of sound in a liquid

E Energy delivered to the plate

E, Total energy transmitted across unit area in a shock wave

e Napierian base, 2.718

Fj Effective force on the plate, Equation [31a]

h Thickness of the plate

I fpdt or impulse per unit area

M Effective mass of the plate, Equation [30]

M b Effective mass for action of a baffle, Equation [34b]

M, Effective mass of liquid following the plate in non-compressive motion,
Equation [36]

m Mass per unit area of the plate

N Dynamic response factor or load factor, Equation [89]

p Pressure; especially, pressure at the surface of the liquid

p. Pressure in an incident pressure wave, in open water

p,, Maximum value of p,

p, Excess of pressure above po in the liquid

P0 Total hydrostatic pressure, including atmospheric pressure, on the face
of the plate

PO Total hydrostatic pressure, including atmospheric pressure, on the back
of the plate

p, Net force per unit area on the plate due to stresses

q Equals aup or 2T.1iTT., Equation [91]

R Distance from center of a detonated charge

r Distance along a circular plate measured from its center

s Distance between two elements of area

Td Diffraction time or average time for a sound wave to travel from the edge
to the center

To Compliance time or time for an element or a structure to acquire maximum
velocity

T, Damping time of a plane plate acted on by plane waves, equal tom/pc

T, Swing time or time for a plate or other structure to swing out to a
maximum deflection

t Time

U Velocity of propagation of a cavitation edge

v Velocity

v, Velocity of the center



a v

Ve Maximum value of v
V,,1  Maximum value of v

x Equal to pc/am
z Deflection of the plate normal to its initial plane; z refers in

analytical work to an element, but in deflection formulas to the
center, where It replaces z,

Zb Displacement of a plane baffle

X, Value of z at the center
ZeD Value of z due to static pressure
Z, Central z at the elastic limit
z1 Normal velocity of a liquid surface

zM Maximum of z at the center, before unloading
Z1  Value of z, calculAted with disregard of the elastic range
ZP Normal velocity of a point on the plate

a A constant in the formula for an exponential pressure wave, pi - pe-
p 21r times frequency

p or P1 Density of a liquid

pa Density of material composing the plate
a Yield stress

4 Net force per unit area on the plate due to stresses in it and to
hydrostatic pressure on its two faces

0 Effective force due to 0, Equation [31b]

Note:- In all cases, the word "diaphragm" may be substituted for the word"plate.,



DIGEST*

The aim of the underwater explosion research program, at least as

far as the David Taylor Model Basin is concerned, is to provide the ship de-

signer with a means of predibting the effects of underwater explosions on

given structures, and with a basis for designing new structures to better

resist given explosions.

The problem thus presented is one of considerable difficulty, es-

pecially for contact explosions. Even in the case of a shock wave from a

distant explosion, and when the ship structure is-idealized in simple form,

complicationR arise because the motion of the structure reacts back upon the

water and thereby modifies the pressure field. The treatment of this effect

involves the solution of problems in the diffraction of waves. Further com-

plications may arise from the occurrence of cavitation. Only one case is

easily treated analytically; this is the case of a plane plate or diaphragm

of infinite lateral extent.

This repbrt makes use of some of the methods hitherto developed by

S. Butterworth, G.I. Taylor, and H.W. Hilliar in England, and by J.G. Kirk-

wood, R.W. Goranson, A.N. Gleyzal, W.P. Roop, and others in this country,

including the author. It adds to them further analytical results and concep-

tions which are useful in considering the ction of bhock waves. The formu-

las are used to discuss some of the exp rimental data now available on plate

diaphragms.

To put the matter somewhat differently, it is believed that enough

is now known of the fundamental phenomena accompanying an underwater explo-

sion to warrant a more accurate analytical treatment than has been possible

in the past, taking into account details of the various processes involved.

In this treatment the target is idealized, as has been done for

much of the recent experimental work conducted under the general supervision

of the Bureau of Ships, in the form of a plate or diaphragm initially plane,

backed by air and subjected to a non-contact explosion. However, the resem-

blance of this idealized target to a panel of plating in the side of a ship

has been kept in mind throughout, to render the results as useful as possible

in ship design procedure.

In the consideration of the effect of an explosion shock wave im-

pinging on a plate, involving 1. characteristics of the wave and relief of

* This digest is a condensatik of the text of the report, containing a description of all essential

features and giving the principal results. It is prepared and included for the benefit of those who

* cannot spare the time to read the whole report.
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Figure 11 - Illustration of the Significance
of Time Factors for a Diaphragm

T, is the time constant of a shock wave,

d is the diffraction time,
,, is the compliance tine,
T, is the swing time, and

e is the speed of sound in water.

the pressure due to motion of the plate away from the explosion, 2. diffrac-

tion of the wave from beyond the edges of the plate, and 3. cavitation ef(-

fects in the water, at or near the surface of the plate, it is found that the

relative magnitudes of four characteristic times play a determining role.

These times are:

1. The time conetant or approximate time of duration of the shock wave

T,; this is equal to I/a for an exponential wave characterized by the expres-

sion p - pe. ;

2. The compliance time T. of the structure, defined as the time re-

quired for the shock wave to set the structure in motion at maximum velocity;

3. The diffraction time Td, or the time required for a shock wave to

travel from the center of the structure to the edge, moving at the speed of

sound in water;

4. The swing time T. of the structure, or the time required for it to

undergo maximum deflection and come to rest.

The significance of these four times in a typical case is shown in

Figure 11.

When the diffraction time and the swing time are both great com-

pared with the duration of the pressure load, the conception of conveyance by

waves is valid for both energy and momentum. This occurs in thin diaphragms

mounted in a larger and heavier plate and attacked by charges of small size.

When the time constant of the shock wave is much greater than the

diffraction time, the pressures become readjusted with such relative rapidity

over the face of the target that local effects due to the compressibility of
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the water are largely ironed out and the action on the target becomes essen-

tially the same as it would be if the water were incompressible. In fact,

there is a continual tendency for the effects of a pressure wave to undergo

changes in the direction of non-compressive action.

Cavitation due to inertia, as on the back of the propeller blade

of a ship, is a familiar phenomenon in the non-compressive motion of water.

Similarly, a target plate, together with the water in contact with it, may

be accelerated so rapidly that the water farther away is unable to share

fully in the motion. The water becomes expanded, the process of expansion

progresses to the point where tension develops in the water, and cavitation

results. The water and plate behave much like a spring loaded with a mass.

If the spring is compressed and

then released, the mass over-

shoots its position of equilib-

rium. A picture of what appears

to be cavitation due to elastic

overshoot is shown in Figure 13.

A necessary condition

for the occurrence of cavitation

appears to be that the compliance

time of the structure, T., shall

be less than its diffraction time,

Ti. If this is not the case, wa-

ter flows in from the outlying

regions and equalizes the pres- Figure 13 - Photograph Showing Cavitation
Bubbles Produced by a Shock Wave

sures. in Water near a Lucite Window

Although analytical The ow globe woftwd by the emplasionlm

results for the general conditions i v the left.

discussed in Parts 1 and 2 of the

report are found difficult to obtain, it is possible to develop exact analyt-

ical formulas for one three-dimensional case in which waves fall upon the

initially-plane face of a target of effectively infinite lateral extent.

The expression for the pressure is obtained by superposing upon the

doubled pressure caused by reflection from a rigid target a correction to al-

low for motion of the surface. This operation is carried through for a plate

or diaphragm, either mounted in a support that approximates a rigid baffle or

without a baffle. From the latter it is found that the release of pressure

arourl the edge of the plate has the effect of diminishing or even eliminat-

ing the doubling of the incident pressure due to reflection.

For mathematical convenience it is assumed that the motion of every

point on a diaphragm stays in a ratio fixed for that point to the motion of
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.0- the center. This excludes the

1.8 Free Surface- sort of propagation effect that
,.6 _ _.o9L-A. rt Vcauses progressive plastic ac-

dt tion, moving from the rim toward

-,- the center, for which good evi-

1.2 J. . dence exists, but it does not,
9K,,o, as most simpler treatments do,

151 assume rotational symmetry of

0.-- °'- deflection.

0.6 41 _r' _.The advantage of this

0assumption lies in the fact that

- - it leads to the inference that
0.2' when acceleration does not vary

0 0. 0.2 0.3 0.4 0.5 r o0.7 oe o.9 ,. too rapidly the pressure load on

Wthe diaphragm may be calculated

Figure 19 - Distribution of Velocities in by flow theory alone. Even if
Three Types of Proportional Motion, the rather artificial condition

.Por a Circular Diaphragm

ds/dt Is the velocity perendicar to the iitia plane is not satisfied, it may be sup-
at a distance r from the center of the diaphr gm whose posed that the calculation based.
radius is a. The velocity is shown in each came on an
arbitrarys.cae. upon it provides an approxima-

tion to the truth.

In Figure 19 are shown the radial distributions of velocity for

three simple types of such motion. One of them could occur initially on the

surface of the water exposed in a hole.

The principle of reduction of the effects to those which would be

caused by flow pressures alone, without referencs to the shock-wave action,

finds another application in the case of a suddenly applied steady pressure.

This last assumption permits calculation of the acceleration and the velocity

of the center point of a proportionally-constrained diaphragm as a function

of time. The results are exhibited in Figure 20 and are compared with the

approximation furnished by considering flow action alone. The case of im-

pulsive loading is also treated with similar results.

On pages 38 to 43 inclusive, consideration is'given to cavitation

at a plate or diaphragm and its effects upon the target. In particular,

there appears to be a relation between the formation and the closing of a

cavity, such as shown in Figure 22, and the characteristic deflection of a

thin diaphragm. This is more or less spherical for a static or a slowly ap-

plied load, with cavitation absent, and conical for a suddenly applied load,

when cavitation is probably present.

In Part 4, beginning on page 43, the swing time T, is calculated

for a few typical diaphragms met with in tests or in service. Following
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0.7J

6 0.15

dtl

d 0.5 - --- '0.

o. 2 0.04 05 O0

0.3 z FI I

O o - -r I I --.-- T-1

0 02 0.4 OAS 0.0 1.0+ 1, .2 1.4 1.6 1.8 2JD 2.2

Figure 20 - Curves for a Diaphragm under Uniform Pressure Suddenly Applied

The diaphragm in constrained to move paraboloidally; z. in the deflestion of its center, 9 is the
time, and Td is the diffraction tine, equal to the radius of the diaphragm divided by the speed
of sound. The curves represent actual values of acceleration and velocity; the lutes r sant
the non-compressive values. The plot is drawn for a particular case, an explained in the text,
and is only approximate.

Figure 22 - Illustration of the /
Edge of a Cavitated Area /

In the left-an figure the edge is advancing at U, U1 / !
speed U owe the face of the diaphragm. In the /
right-hend figure it is receding; at the edge,
th tangent to the liquid onface makes an angle

0 with the tangent to the diaphragm, end, as the 1U
edge passes, each point of the liquid surface

changes its normal velocity from ia to the
norma velocity &P 0: the plate.//

//

this, on pages 44 to 54, deflection formulas are developed for a number of

cases in which one type of exponential wave is assumed.

Finally, a summary is made of the results of the dynamical analysis

in their application to the estimation of damage, and particularly to the

solution of the problem as to the particular feature of the shock wave upon

ViL
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which damage to a diaphragm depends. Is it the maximum pressure, the impulse,

or the energy? A related problem is the law according to which the damage

varies with size of charge and with distance.

The results of this and other analyses indicate clearly that no 0
simple and general solutions to these problems are to be expected, but that

a few simple rules can be given for certain special cases.

1. For relatively small structures, such as Modugno gages, and for

relatively large charges in excess of 50 a2 pounds,* say 10 pounds or more

for gages of this size, the miazmm pressure should be the chief factor in

determining damage. In these cases the time of action of the pressure, T,,

greatly exceeds both the swing time T, and the diffraction time Td .

2. The impuLae should determine damage when (a) cavitation does not

occur, and (b) the time of action of the pressure T, is much less than the

swing time of the structure T,. For a diaphragm of radius a inches, this

should hold for a charge of as/100 pounds* or less.

3. The esergV carried by the wave does not appear in any simple dam-
age formula obtained from the present dynamical analysis.

The ratio of energy absorbed by the diaphragm to that contained in
the incident wave is not fixed and may exceed unity. Nevertheless it is con-

cluded that the observed rough proportionality of the deflections of many

diap.iragms or similar structures to W R, or at least to the square root of

the energy in the incident wave, and the approximate equality of the plastic

work to the incident energy, stand in fair harmony with analytical expecta-

tions.

Part 5 gives a numerical comparison of the theory with results of
observation in Reference (20) for Modugno gages and in Reference (22) for

21-inch steel diaphragms. It is found that to account for observed data

taken with the Modugnogage it is necessary to suppose the plastic stress in

the diaphragm to be about 55 per cent higher than in static tests. On the
21-inch diaphragms the results depend on the assumptions about cavitation.

It is concluded that 6avitation must occur and that a large part of the en-

ergy of plastic deformation of the diaphragm must reach It after closure of

the cavitation, though it cannot be determined whether the cavities form

first in the water or at the surface of the diaphragm.

(
p.13 tb r~dmuoftin.uote~mz diaplwaqp4 Inaclg.

* '. .
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THE EFFECT OF A PRESSURE WAVE ON A PLATE OR DIAPHRAGM

ABSTRACT

A systematic study of the phenomena attending the impact of a pres-

sure wave upon a plate, usually a shock wave, Is introduced by a discussion

of the commonest case, followed by the treatment of a number of special top-

ics: the various characteristic times that are involved; cavitation at the

interface; the transition to non-compressive action; the effect of a baffle;

formulas for the swing time and the deflection of a diaphragm; the factors

determining damage; and the departure from Hooke's law in water.

The formulas are applied with fair success to some test data from

experiments conducted by the Bureau of Ships and the David Taylor Model Basin.

Most of the mathematical treatment is set down in an appendix to

the report.

INTRODUCTION

In ship design it would be a great advantage if effects of under-

water explosions on the structure could be calculated analytically. However,

the problem thus presented is one of considerable difficulty, especially for

contact explosions. Even in the case of the shock wave from a distant explo-

sion, and when the structure is idealized in simple form, complications arise

because the motion of the structure reacts back upon the water and thereby

modifies the pressure field. The treatment of this effect involves the solu-

tion of problems in the diffraction of waves. Further complications may

arise from the occurrence of cavitation. Only one case is easily treated

analytically; this is the case of a plane plate or diaphragm of infinite lat-

eral extent.

The problem of a diaphragm loaded by a shock wave has been treated

several times by more or less approximate methods (1) (2) (3) (4).* In his

second report on the subject, Kirkwood gave a general treatment in which ade-

quate allowance was made for diffraction (5) (6) (7) (8), and in a later re-

port the effect of cavitation was discussed (9).

It is the purpose of this report to collect the material that has

been assembled at the David Taylor Model Basin for attacking problems of this

kind and to consider its application to a few of the available data. The

material to be presented consists in part of analytical formulas and in part

of conceptions which are useful in thinking about the action of shock waves.

* limbers in parentheses indicate references on pap 62 of this report.

D,
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The target will usually be idealized in the form of a plate or diaphragm,

initially plane, backed by air at a pressure equal to the hydrostatic pres-

sure. Only non-contact explosions are considered in this report.

In view of the complexity of the phenomena, the analytical results
will first be described in general terms for the case that is moat common in

practice. Some of the ideas developed in this discussion will be made the

basis for the classification of other cases that may arise. After a few re-

marks on the role of the Bernoulli effect, the analytical methods will then

be described. This will be followed by the discussion of other cases and a

more detailed treatment of certain phases of the damaging process. The clos-

ing sections of the report will give some formulas for the deflection of a

diaphragm, a discussion of the features of the pressure wave that determine

damage, and an application of the formulas to some of the available data.

Many of the appropriate analytical methods for dealing with these

problems have already been published in other reports, a number of which are

listed in pages 62 to 64, but for convenience a rather complete and syste-

matic mathematical treatment is included as an appendix to this report.

PART I. DESCRIPTION OF A COMMON CASE PRESENTED FOR ORIENTATION
THE WAVES OF PRESSURE PRODUCED BY A NON-CONTACT UNDERWATEh EXPLOSION

When a charge is detonated under water, it produces effects upon

structures submerged in the water only by producing pressures in the water.

The distribution of this pressure will be influenced by the associated motion

of the water - indeed, it is transmitted by such motion - and motion of the

structure itself will in turn modify the pressure in the water. A complete

description of the action by the water on the structure can be given, how-

ever, in terms of the pressures acting upon the surfaces of that structure.

In the primary pulse of pressure produced by the detonation, the

pressure rises almost instantly to a high value and then decreases. The rate

of decrease diminishes, however, so that the time graph of the pressure pulse

has a long "tail." This is illustrated in Figure 1, which has reference to a

300-pound charge of TNT 50 feet away, and in Figure 2, which is reproduced

from an oscillogram given by a pressure gage at a distance of 17 inches from

a charge of 1 ounce of tetryl.

The high-pressure part, sometimes called the A-phase or the shock

wave, is of such short duration that it takes the form of a distinct wave of

pressure traveling through the water at finite speed. In the tail or B-phase,

on the other hand, the relative rate of change of pressure is much slower,

and the pressure in the water soon comes to stand in a definite relation to

the simultaneous motion of the expanding gas globe. The appearance of wave

propagation thus disappears in this phase, and the pressure and the motion
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2000
1M

0. 0 I 2 3 4 5 6 7 910
Tin* in millileconds

Figure 1 - Approximate Shock-Wave Figure 2 - Oscillogram Showing the
Pressure in the Water at 50 Feet Pressure in the Water at 17 Inches

from 300 Pounds of TNT from a Charge of 1 Ounce of Tetryl
The ordinate represents the pressure in open water The pressure rime almost instantaneously to
as it would be recorded by a gag so ma an to cause a peak value of 3400 pounds per squas inch.
no appreciable modification of the pressure field.

come to be related almost in the way in which they would be related if the

water were incompressible. Any effects that may be produced by the tail of
the pressure wave constitute those effects which are sometimes ascribed, not

to the pressure wave, but to the expansion of the gas globe.

During subsequent recompressions of the gas globe, secondary pulses

of pressure are emitted. The character of these is not yet certain. The
theory of an oscillating spherical gas globe indicates that the time graph of
the pressure in the secondary pulses should be roughly symetrical about the

point of peak pressure, without any shock front, and 8hould be weaker and

much broader than the initial shock wave. See Reference (10).

PRIMARY SHOCK WAVE AND AN AIR-BACKED PLATE:

A TYPICAL SEQUENCE OF EVENTS
The analytical results will now be described for the case of a

shock wave falling upon one of the plates of a ship's shell, or for a corre-

sponding test on model scale. The wave will be assumed to fall normally upon
the plate, and both wave and plate will be assumed to be sensibly plane. The

action can be divided into two distinct phases, which will be discussed in

order.

Primary Shock Phase

In the cases considered here, the time required for an elastic wave

to traverse the thickness of the plate is so short that it may be neglected;

the plate can be treated, therefore, as a two-dimensional structure with a

certain mass m per unit area.
Before the beginning of the explosive action, the elastic stresses

in the plate will be in equilibrium with the difference between the hydro-

static pressure in front of the plate and the pressure on the back face.
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When the shock wave arrives, there-

Pi fore, each element of the plate will

start moving as if it were part of
.an infinite plate acted upon by a

p-2pi -pct plane wave of infinite lateral ex-

tent, as is suggested by Figure 3,

and for a short time the simple the-

Figure 3 - Illustration of a Plane Wave ory of the one-dimensional case will
Incident Normally upon a Plane Plate be applicable.

of Infinite Lateral Extent

in the incident wave pressure, a is the mae per At first the increment of
unit area of the plate, and s is the displacement of pressure p, due to the incident wave
the plate. The pressure v on the plate is the dif-
ference between the incident pressure, doubled b7 is doubled by reflection; then, as
reflection, and a relief term proportional to the the plate accelerates, a relief ef-
velocity s of th plate. fect occurs and the pressure rapidly

falls.

Let it be assumed that hydrostatic pressure on the face of the

plate is balanced by an equal pressure on its back surface. Then the approx-

imate equation of motion for each element of the plate during the initial

phase is

M -2p,- ]dt

where x is the displacement of the. element in a direction perpendicular to

the face of the plate, p is the density of water in dynamical units, c the
speed of sound in it, and their product is the specific impedance of the wa-

ter. The incidenL pressure p, is a function of the time t. See Equation

[107] in the Appendix, in which * is here equal to 0. The right-hand member

of Equation [1] represents the load pressure on the plate; *the term in ds/dt

represents the relief effect due to the motion of the plate.

The A-phase of the primary pulse can be represented approximately

by

P, - PM (2]

where p, and a are constants and the time t is measured from the instant of

onset of the wave. If pi varies in this manner and the plate starts with z =

0, ds/dt - 0 at time t = 0, it is found from Equation (1] that

d z 2 p , (. -a - .
t m -0 [3

so that the load pressure on the plate is
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Figure 4 . Parameters Relating to the Incidence
of an Exponential Wave on a Plate

d 2X 21np.

M PC - c-a (-m a-a" + [4]

where e is the Napierian base; see TMB Report 480 (10), page 25.

From this equation it is found that the load pressure vanishes at

the time

t - I Inz - [5a, b]

a X-1' am

where In denotes the natural logarithm. At this time the incident pressure

as given by Equation [2], which would be the actual pressure in the water if

the plate were not present, has decreased to

Pi - pMz 1-, [6)

and the velocity of the plate has attained its maximum value of magnitude

-:e "2"=z 1  -" [7]
pc

See TMB Report 489 (11), page 7.

In Figure 4 there are shown plots of a T. or Inz g/(z - 1), and of

the factor z -T IB or pcvw/2p, as functions of z.
The parameter z defined by Equation (5b] can be interpreted as the

ratio of two time constants, as follows:
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T1
g- , Tv - , T,- - [8a, b, c]

Here T. is the time constant of the incident wave. T. is called by Kirkwood
the daepisg time of the plate; if the plate, in contact with the water, is'
given an impulsive velocity and then left to itself, its velocity decreases
in the ratio 1/o - 1/2.718 in the time T,, provided no forces act other than
those called into existence by the motion of the plate against the water. T.
may be visualized as the time required for a sound wave to traverse a thick-
ness of water having the same mass as the plate.

The time T. might be defined more generally, for any type of pres-
sure wave, as the time required for the plate to attain its maximum forward
velocity. It may be called the compliance time for the plate under the ac-
tion of the wave.

In the case of the exponential wave, if T. - Tv, r - 1 and T. T .

T.. Thus the compliance time is the same as the damping time for a wave of
equal time constant. If T# T., the compliance time T lies between the
damping time T, and the time constant of the wave T,. Thus for a very light
plate, T. < T. < T.; in this case the positive action of the wave on the
plate ceases while the wave is still strong. If T, is much smaller than T.,
so that c is much larger than unity, the maximum velocity v, approaches 2p./pc
or twice the particle velocity in the incident wave. For a relatively heavy
plate, on the other hand, T. > T, >.T,. As the plate is made Rti1l heavier,
both T. and T, increase without limit.

As an example, for the shock wave at 50 feet from 300 pounds of TNT
exploded In sea water, p. and a are of the order of 2100 pounds per square
inch and 1300 second-', respectively. Thus T, - 1/1300 second. The values
of the compliance time T, for such a wave falling on steel plates of several
thicknesses are shown in Table 1, together with the values of x and of the
damping time T, of the plates against sea water.

TABLE 1

Thickness T, T.
of plate z -oT Z
inches milliseconds milliseconds

10 0.6 1.29 0.96 0.28
3 2.0 0.39 0.53 0.50
1 6.0 0.129 0.28 0.70

0.3 20 0.039 0.121 0.85
0.1 60 0.0129 0.052 0.93
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Load-Pressure on
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Velocity of Plate oOc

1W00
pIncident Pre
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Figure 5 - Curves Illustrating the Incidence of a Shock Wave
on a Plate when Cavitation Does Not Occur

The cuves are dti for the wave from 300 pounds of TIM falling upon aa air-backed 1-inch steel
plate 50 feet away. Te is the compliance time, at which the plate has acquiredatefr

velocity; T., in the time octant of the wve or 1/a in the formula, , = -a

In the last column of Table 1 is shown the value of #-or, or the
ratio o thhe incident pressure t the time t - T to the maximum Incident
pressure.

In many model tests conditions occur that are comparable in terms
of similitude to the wave from 300 pounds falling on a 1-inch plate. Curves

for this case, with the plate at 50 feet from the charge, as calculated from
the one-dimensional theory, are shown In Figure 5.

The use of the one-dimensional formulas implies the tacit assump-
tion that during the tine T,, diffraction effects may be neglected. This is

justified provided the plate Is sufficiently large in lateral dimensions.
Consideration of this condition leads to the introduction of a third charac-
teristic time, which may be called the diffractios timse, T'd. This can be de-
fined with sufficient precision for practical purposes as the tine required
for a sound wave i the water to travel from the center of the plate to the

edge. Thus for a circular plate of radius a, T , - a/c, where c is the speed

of sound in water.

Diffraction can be regarded as a process acting to equalize the

pressure laterally, or in directions perpendicular to the direction of prop-

agation of a waVe. Because of this process, a wave that has passed through

an opening in a screen spreads laterally, contrary to the laws of the recti-

linear propagation of waves. Similarly, when a wave of pressure falls on a
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diaphragm mounted in a heavy ring, be-

cause the forward motion of the dia-
High phragm relieves the pressure over the

Pressure
E diaphragm, a process of equalization of

7T pressure in the water sets in and actsa

Direction of Low to lower the pressure in front of the
Incident Pressure

Pressure Wave ring and to raise it in front of the
tdiaphragm, as illustrated in Figure 6.E

High Since, however, effects of
Pressure moderate magnitude are propagated

through water only at the speed of

sound, the equalization requires time
Fir6ramtion to a IllesurWave for its completion. Thus, during anDiffraction of a Pressure Wave

By moving forward, the diaphraga relieves the interval much shorter than the diffrac-
oressure, and equaliation of the presure by tion time, after a shock wave has
diffraction then occurs in the direction of
the arroe, I. struck a plate, lateral equalization

of pressure between the water in front

of the plate and that beyond its edge, or even between different parts of the

plate, will not have had time to progress very far. During this short time

each part of the plate will respond to the incident wave more or less inde-

pendently, according to the laws that hold for the one-dimensional action of

shock waves on plates.

In the example just described, If the plate is 10 feet across, the

diffraction time Td is one millisecond. This exceeds .the compliance time T,

by a good margin for plates up to a thickness of 1 or 2 inches, as is evident

from Table 1, so that the one-dimensional formulas should give good results.

On a plate 10 inches thick, however, diffraction from the edge would produce

a large effect.
It has been assumed in the foregoing discussion that appreciable

stress forces are not called into play by the small displacement of the plate

that occurs during the time T,". This is usually true in practical cases. In

the example just described, for instance, the maximum velocity acquired by a

1-inch plate is, from Equation 17],

,. -2 5 5.5-m 510 In/sec

Even in a millisecond, therefore, the plate will have become displaced by

les than half of its thickness. Stress forces, if appreciable,would have

the effect of reducing the maximum velocity.

Phenomena in the second phase of the action, now to be discussed,

will depend upon whether cavitation does or does not occur.
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No Cavitation: The Tension Phase
If the water remains in contact

with the plate, as in Figure 7, tension //
develops in it, and this tension tends to //
arrest the motion of the plate.

In the one-dimensional case, C Wate / Air

the plate is thus brought to rest in the
end, and its total displacement is Just
twice the displacement produced in free

water by the passage of the incident wave; /
see TMB Report 480 (10), page 25. This
case is illustrated In Figure 5. If the

plate Is limited In extent, however, Figure 7 - Schematic Illustration
of the Deflection of a Plate

forming part of a larger structure of without Cavitation

some sort, the influence of diffraction
will usually be such that the plate retains part of the velocity that it ac-

quired during the primary shock phase. If the shock wave is of very brief
duration, the plate may come almost to rest and then be accelerated again as

the diffracted pressure is propagated in from the edge.

The analysis indicates that the residual velocity left in the plate
should be of the order of the velocity that would be calculated by non-

compressive theory with allowance for loading of the plate by the water; this

is verified in a special case in the Appendix. If there is open water beyond
the edge of the plate, the calculation should be made for a pressure equal to

the incident pressure; in this case, although the pressure is doubled at

first by reflection, the doubling quickly fades away as diffracted waves ar-

rive from beyond the edge of the plate. If the plate is mounted in a large

rigid baffle, however, the doubling persists and the non-compressive calcula-

tion should be made with twice the incident pressure.
The plate will then continue moving until it is arrested by forces

due to other parts of the structure. During the process of arrest, the ki-

netic energy in the plate and in the adjacent water becomes converted Into

other forms, perhaps partly or wholly Into plastic work. The time required

for the final arrest of the plate constitutes a fourth characteristic time,

which may be called the swimg time of the plate, denoted by T,. Here the

swing time under water-loading is involved. In the case of ships or compara-
ble models the swing time is usually many times longer than the duration of

the A-phase of the pressure wave.
Some formulas that may be used in making rough estimates of swing

times will be found as Formulas (65] to [68] on pages 43 and 44.
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Cavitation at the Plate:
/ 7' The Free-Flight Phase

// It has repeatedly been ob-
/ // served that cavitation occurs near the

I /interface between water and a solid,

Charge I when tension develops in the water be-e I Water // AirI Wr / hind a reflected shock wave. See, for

/ Cavitation example, Figure 13. If cavitation
/ were to occur at the interface and

7there only, as in Figure 8, just as

the increment of pressure due to the

wave sank to zero, the plate would

Figure 8 - Schematic Illustration of leave the water at the time T,, with
Deflection of a Plate with Cavitation the velocity v, given by Equation 171;

Only at the Plate

The broken curve represents the front of the see Figure 5. In reality, cavitation
reflected shock wave. cannot occur until the pressure sinks

at least to the vapor pressure of the

liquid, and it may not begin until a lower pressure is reached. Hence in

practice a short phase of negative acceleration would intervene and the. plate

would leave the water, with a velocity somewhat less than Y.; for example, at

the time T' in Figure 5. Many initial velocities agreeing with this deduc-
tion from theory have been observed at the Taylor Model Basin. A streak pho-

tograph illustrating the sudden acquisition of velocity by a plate is repro-

duced in Figure 9.

Diaphragm

I I I I l

Spoft.0 .5
Time in milliseconds

Figure 9 - A Streak Photograph Showing Impulsive Acceleration
of a Diaphragm by a Shock Wave

The streaks were sede by light from 5 spots, one on the center of the diaphragm, two others half way
to the edge, and two an the sipporting rim. The line of view wan at 30 degrees to the plane of .the
diapbrage. The streaks war de fro left to r1ght. The sude bend terminating the straight portion
of emb streak Imidatee am lpulsive aequisitia of veloaty by the diaphragm.

t
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The plate vill then swing away from the water; see Figure 8. It

may swing freely until it is arrested by the combined action of the elastic

or plastic stresses in the plate and of any difference in pressure that may

exist between its two sides. The kinetic energy to be absorbed in this pro-

cess will be only that of the plate itself; and the swing time will be that

of the plate without water-loading.

The motion of the water surface during this time must also be con-

sidered. According to the results of analysis, the velocity of the surface

should decrease, but it should not entirely disappear, because of diffraction

effects; see the discussion in the Appendix. Furthermore, if a considerable

part of the shock wave arrives after the departure of the plate, this will

cause further acceleration of the water. It is possible, therefore, that the

plate may be overtaken by spray projected from the water surface, and it will

certainly be overtaken eventually by the water surface itself; the motion of

the plate may thus be prolonged, with a corresponding increase in the plastic

work (3).
If the plate is held at its edges, the outer parts of the plate

must be jerked to rest by the support almost immediately, while the central

part continues moving. Such motion has been observed in 10-inch diaphragms

at the Taylor Model Basin. Cavitation occurring over the outer parts of the

diaphragm must, therefore, be short-lived; here the water must overtake the

plate almost immediately.

As an alternative to thi / /./ /
simple process just described, the /
cavitation might begin In the wa- /

ter itself, in the form of bubbles, I

so that for a time there would con- /
tinue to be a layer of unbroken wa-

ter next to the plate, as in Figure

lOa. Or, as a special case, it

might begin at the plate and pro-

ceed at once to spread out into the

water, as in Figure lOb. This pos-

sibility has been explored in gen-eralterm (12, an itspracical Fiipue 10. - Iit ailk Car- gine 1 b - Wit Etilk
era terms (12), and its practical tation at Some Distance in Cavitation Ertending

application has been discussed in Front of the Plate Outward from the Plate

TMB Report 511 (13) and independ- Figure 10 - Illustration of Deflection

ently by Kirkwood (9). of a Plate

If the cavitation process Th brokn curve represents the front of the

is of this character, the motion of refleoted shock mve.
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the diaphragm will be influenced continually by the presence of water in con-

tact with it. Analytical treatment is easy in the one-dimensional case, pro-

vided the artificial assumption is made that cavitation occurs at a fixed and

known breaking-pressure; but the three-dimensional case presents considerable

difficulty. For this reason, only cavitation at the face of the plate will

be dealt with in the present report. The final deflection of the plate may

not be greatly influenced by the exact mode in which cavitation occurs.

PART 2. THE VARIOUS TYPES OF ACTION BY A SHOCK WAVE

THE FOUR CHARACTERISTIC TIMES

In the foregoing discussion of a typical sequence of events, the

relative magnitudes of four characteristic times have played a determining
role. These times may be listed together as follows:

1. The time constant or approximate time of duration of the shock wave,

T,; this is equal to 1/a for an exponential wave characterized by the expres--at

sion p = pe ;

2. The compliance time T, of the structure, or the time required for

the shock wave to set the structure in motion at maximum velocity;

3. The diffraction time Td, or the time required for a wave to travel

from the center of the structure to its edge;

4. The swing time T, of the structure, or the time required for it to

undergo maximum deflection and come to rest.

An attempt to picture the significance of these four times in a typical case

is made in Figure 11.

cT, 
A

S - -dt

0. '"Diophrogm

Time Time

Figure 11 - Illustration of the Significance
of Time Factors for a Diaphragm
To is the time oonstant of a shock wave,

Td is the diffraction time,
T. is the oomplianoe time,

T* is the swing time, and
a is the speed of sound in water.
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In the case of a complicated structure such as the side of a ship,
sevpral different diffraction times and swing times may be distinguished, ac-
cording to the dimensions of the part of the structure that Is under consid-
eration. Thus there will be a diffraction time and a swing time for the
motion of the segment of a plate between two adjacent stiffeners, and longer
times for the motion of the st~ffened plate as restrained by bulkheads or
belt frames.

The characteristic times are useful in classifying the various
cases that may arise. There are two simple cases which are particularly use-
ful to bear in mind as a background in considering more complicated situa-
tions. These two cases will be discussed in some detail.

THE CASE OF LOCAL ACTION
The typical situation contemplated in the preceding discussion was

distinguished by the condition that

T. << Td, T. 4C T. (9a, b]

where tne symbol < means "is much less than." In other words, the compliance
time is several times shorter than either the diffraction time or the swing
time. The diaphragm acquires maximum velocity and cavitation sets in before
diffraction from the edge has had time to influence the motion appreciably,
and also before the stresses in the diaphragm have produced appreciable ef-
fects. The action in such cases is essentially a local one, since, in large
measure, each element of the target is set In motion by the wave Indepenient-
ly of other elements.

This case can occur only provided the time constant of the wave,
T, is not too long. It is sufficient, for example, if T4 Td and T.C IT,,
that is, if the action of the wave is completed in a time much shorter than

either the diffraction time or the swing time.
An especially important feature of the case of local action is that

in this case the conception of conveyance by waves is valid for both energy
and momentum. Any part of the target can receive at mos. -ly so much energy
as is brought up to that part by the incident wave; and part G. this incident
energy will usually be reflected back into the water. The momentum brought
up to each part of the target, also, must be either taken up by the taret or
reflected. Since momentum is a vector quantity, however, the laws of its re-

flection are more complicated than are those for the reflection of energy;
the momentum delivered to the target may be greater than that brought up byIthe incident wave, up to a maximum of twice as much if the target is rigid.
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NON-COMPRESSIVE ACTION ON A TARGET
At the opposite extreme from local action lies the case of approxi-

mately nun-cempressive action.* The condition for this Is that no great

change shall ,ncur'in the incident pressure during an interval comparable t
with the diffraction time, that is, that

T. >> Td

where the symbol . means "is much greater than." When this condition holds,

the pressures become readjusted by diffraction with such relative rapidity

over the face of the target that local effects due to compressibility of the

water are largely ironed out and the action on the target becomes essentially

the same as it would be if the water were incompressible. Viewed in the

large, the pressure field results from a compressional wave propagated up to

the target, but its local effects are about the same as those due to an equal

pressure field at the target resulting from or-

dinary hydraulic action.

An important feature of non-compressive

action, and one that disttnguishes it sharply

from the typidal local action of waves, is that

the energy given to the target may greatly ex-
E ceed the energy that would fall upon it accord-

ing to the laws of wave propagation. In non-

F F compressive action energy is propagated through

moving water by the pressure just as it is in a

hydraulic press.

An excellent example is presented by a

Hilliar pressure gage (14) subjected to the

shock wave from a charge of several hundred

pounds. The face of the gage, H-H in Figure

12, is perhaps 4 inches across, so that the

diffraction time Td may be 1/30 millisecond,

whereas the time constant of the wave is of the

order of a millisecond. Thus non-compressive

Figure 12 - Illustration of theory should give a good account of the effect
a Hlliar Pressure Gage of a shock wave on a Hilliar gage. The energy

The steel piston A is projeoted up- acquired by the piston of the gage may greatly
wards by the pressure due to the
shock way, thereby hamering the exceed that which is propagated in the shock
copper cylinder C against the top wave across an area equal to that of the faceo." tho ppo. This divszm is coid

from Figure 34 in Refereno' (14). of the piston. The motion of the piston sets

This is action conditioned by flow, as of an inoonpresible fluid.
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up a local flow in the adjacent water which, in combination with the pressure,

acts like a funnel to collect energy from a broad area of the incident wave.

The non-compressive case also possesses a still wider significance.
There exists a continual tendency for the effects of any pressure wave to

undergo changes in the direction of non-compressive action. Any sudden im-

pulse of pressure produces an increment of motion in the structure according

to the laws of local action; but within a time of the order of the diffrac-

tion time, diffracted waves act so as to convert this motion at least roughly
into the motion that would have been produced by the same pressure impulse

acting in incompressible water, except, of course, as the motion may have

been further altered by forces arising within the structure. This drift to-

ward the non-compressive type of motion has already been mentioned in the
discussion of the tension phase on page 9.

A variety of other cases can be imagined, characterized by various
relations among the four time constants. In considering such cases, the fol-

lowing general rules, already illustrated in the discussion, will often en-

able a step to be taken toward a solution:

1. During an initial interval much shorter than the diffraction time

Td, the formulas pertaining to plane waves will be applicable. In special
cases, when T,<< Td, this interval may cover the whole of the action on the

target.

2. During an initial interval much shorter than the swing time T,, the
elements of the target will be accelerated independently.

3. For a plate or diaphragm, the equation of motion will be approxi-

mately as given in Equation [1] during an initial interval that is much

shorter than either the diffraction time T. or the swing time T.

CONDITIONS UNDER WHICH CAVITATION MAY OCCUR

In the consideration of cavitation it may be conducive to clarity

if a distinction is made between cavitation due to elastic overshoot and cav-

itation due to fluid inertia.
Cavitation due to inertia is a familiar phenomenon in the non-

compressive motion of water. On the back of a propeller blade, for example,

cavitation occurs because the inertia of the water prevents it from following

the blade.
Cavitation between a shock wave and a plate, as discussed in a pre-

vious section, arises in a different manner and is closely associated with

the elasticity of the water. The plate, together with the water in contact

with it, is accelerated so rapidly that the water farther away is unable to
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share fully in the motion. The

water thus becomes expanded and

its energy of compression is

converted into the kinetic ener-
gy of the plate; the process of

expansion progresses to the

point where tension begins to

develop in the water, and cavi-

tation results. The water and

plate behave much like a spring

loaded with a mass. If the
Figure 13 - Photograph Showing Cavitation spring is compressed and then

Bubbles Produced by a Shock Wave
in Water near a Lucite Window released, the motion overshoots
The gas globe produoed b the explosion the position of equilibrium, and

in visible at tho left.
the initial state of compression

thereby comes to be replaced momentarily by one of tension. A picture of

what appears to be cavitation due to elastic overshoot, in front of a lucite

window struck by the shock wave from a small charge, is shown in Figure 13.

Under ordinary circumstances, a necessary condition for the occur-

rence of cavitation due to elastic overshoot appears to be that the compli-

ance time of the structure, or time required for it to attain a maximum

velocity under the action of the wave, shall be less than the diffraction

time:

T. < Tj

If this condition is not satisfiod, inflow of water from regions beyond the

edge of the structure is likely to equalize the pressures and so to prevent

the occurrence of tension in the water.

The occurrence of cavitation should be the same on the usual model

scale ds on full scale, at least if the hydrostatic pressure is the same in

the two cases. For, if all linear dimensions including those of the charge

are altered in a given ratio, all characteristic times will be changed in the

same ratio; in Equation 15a, b], for example, 1/a and n will ho -' £.d in

the ratio of the linear dimensions and z is unchanged. Thus the ratio of T,

to T. is not altered by the change of scale.

Large hydrostatic pressure, however, may act to prevent the occur-

rence of cavitation. The pressure due to the incident wave, as modified by

reflection and the motion of the target, is superposed upcn the hydrostatic

pressure pg, and, if pg is sufficiently great, the resultant pressure may

ne~er sink to the pressure at which cavitation occurs.
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Since it is the excess of pressure above po that accelerates the

plate, the total pressure in the water at the plate will be

d'z
p-p 0 + m --

In the case of the exponential wave represented by Equation [2], md 2z/dt2 is

given by Equation [4]. In this case, by equating dp/dt to zero, the minimum

value of p is found to occur at the time t = 2T, where Tm is gdven by Equa-

tion 15a], and to have the magnitude

1+:

Pmin " P0 - 2P. -  [10]

Thus, if cavitation occurs when the pressure sinks to a certain breaking-

pressure P., which cannot exceed the vapor pressure and may be negative, then

cavitation can occur only if' Pmi. < Pb or

1+X
2Pin - x > Po- pb

Here it can be shown that the factor 2z I-s has a maximum value of

2/e2  0.27 at z = 1 and decreases toward zero as z - 0 or z -.

The maximum depths at which cavitation can occur, as calculated

from this formula, come out too large to be of interest. The shock wave from

300 pounds of TNT, for example, falling on an air-backed steel plate 1 Inch

thick at a distance of 50 feet, could cause cavitation at zero pressure down

to a depth of 700 feet below the surface.

Both in the action of shock waves on Ships and in comparable model

tests the necessary conditions for the occurrence of cavitation due to elastic

overshoot at a pressure not far from zero appear to be met, and observations

on the initial velocities of diaphragms at the Taylor Model Basin indicate

that it does occur.

For a Hilliar gage, on the other hand, the compliance time, or the

time in which the piston would attain maximum velocity if it were not stopped

by anything, is much longer than the diffraction time. Thus cavitation is

not to be expected on the face of the piston.

A more detailed discussion of the phenomena accompanying cavitation

near a plate or diaphragm will be given later in this report, on pages 38

to 42.

THE BERNOULLI PRESSURE AND THE DEVIATION FROM HOOKE'S LAW

At this point it may be worth while to digress slightly for a mo-

ment and consider one or two minor matterE. The question is often asked,

whether the expression for the pressure caused by the impact of a plane wave
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upon a rigid wall ought not to include a term of magnitude pt2 or pvt/2. The

answer furnished by analysis is in the negative.

Even the exact theory of Riemann for the propagation of plane waves

of finite amplitude leads to no direct contribution from the particle veloc-

Ity v to the pressure on a rigid wall. The pressure should be a little more

than twice the incident pressure, but the excess is due entirely to depar-

tures from Hooke's law of elasticity; see the Appendix. It can be said that

the entire increase in pressure arises from the arrest of the particle mo-

tion by the wall. No further increase corresponding to pv2 should, therefore,

be expected.
As an example, when water is compressed adiabatically from zero

pressure and a temperature of 20 degrees Centigrade, its pressure, up to

10,000 pounds per square inch, is approximately given by the formula

309000s (1 + o0) lb/in2 1

where s is the fractional compression or the decrease in volume divided by

the original volume; see the Appendix, Equation [184). The term p/75000 rep-

resents the departure from Hooke's law. Because of this term, the pressure

on a rigid wall due to the incidence of a wave of pressure of magnitude pi

pounds per square inch is raised from 2p to

2 pi (1 + [121

See the Appendix, Equation [185]. For an incident wave having a pressure of

5000 pounds per square inch, the increase is 3 per cent.

In the reflection of spherical waves, also, the usual linear theory

leads to the conclusion that the pressure against a rigid wall is simply

doubled; the afterflow velocity* gives rise to no additional term in the

pressure.

The familiar Bernoulli term in the pressure formula thus puts in

Its appearance only when (a) the pressure field is two- or three-dimensional,

and (b) terms of the second order in the velocity are included. A small pi-

tot tube, for example, turned with its mouth toward the oncoming wave, will

register a pressure equal to p + pv2/2 where p is the pressure and v is the

particle veloeity caused by the wave in unbroken water, whereas with its

mouth turned at right angles to the direction of propagation it registers

Just the pressure p. The motion around the tube is three-dimensional; and

the increase in pressure is of order V2 . Similarly, the pressure at the

a"B. TUB Report 480 (10), PW. 39.
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front stagnation point, or point of zero velocity, on any small rigid ob-

stacle in the path of the waves should be p + pv2/2; likewise, the pressure

on the piston of a Hilliar gage (1I) should be approximately p - pv,2,/2, where
VP is the velocity of the piston.

The Bernoulli effect as represented by the term pv2 In such expres-

sions will thus in some cases play a part in modifying the pressure field in

front of a target. Analysis furnishes no reason, however, to expect addi-

tional effects on the target from a "kinetic wave" following the shock wave.

The pressure field in the water constitutes the mechanism by which the water

is set moving outward and then presently arrested; the pressure field is

physically inseparable from the motion, and its effects on the target include

all effects that might be ascribed to the action of the moving water.

At any fixed distance from the center of the explosion, the pres-

sure in open water should fall continually as the gas globe expands, and it

appears from analytical results that the same should be true of the pressure

on the target. Thus no upward surge of pressure is to be expected "as the

moving water reaches the target"; the idea of a water projectile propelled

by the gas globe and subsequently impinging upon the target is inappropriate

and misleading.

PART 3. THEORY OF A PLANE TARGET

The discussion has been kept in general terms up to this point, and

few exact formulas have been given. General analytical results are difficult

to obtain, and numerical integration has scarcely seemed worth while hitherto

because of incomplete knowledge of the relevant fundamental data.

There is one three-dimensional case, however, in which exact ana-

lytical formulas are readily written down. This is the case in which every-

thing of interest happens in the neighborhood of a plane surface, which may

be supposed to extend laterally to infinity. This case will now be taken up

for discussion in some detail. For generality, the fluid present will not be

restricted to water.

PRESSURE ON AN INFINITE PLANE

When waves fall upon the initially plane face of a target of effec-

tively infinite lateral extent, an expression is easily obtained for the re-

sulting pressure at any point on the face. The waves may be plane, spherical

or of any other type. It must be assumed, however, that they are of suffi-

ciently small amplitude so that the ordinary linear theory of acoustics is

applicable, and that the displacement of the water or other fluid at points

on the plane is small. The first condition should be sufficiently well satis-

fied at pressures up to 10,000 pounds per square inch in water.
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-The expression for the pressure can be constructed by using the
principle of superposition.

The waves are first imagined to be reflected from the surface of
the target as if it were rigid. This gives a resultant wave field in which,
at the surface, the incident pressure is doubled, while the particle velocity
has no component normal to the surface.

A correction is then added to allow for the motion of the surface.
This correction is obtained by assuming the existence on the surface of a
suitable distribution of simple point sources emitting waves of pressure.
Because the surface is plane, each of these waves affects the normal compo-
nent of the particle velocity only at the element that emits the wave. For
this reason the strength of the point sources is easily adjusted so as to
satisfy the necessary boundary ccndition, which is that the surface and the

adjacent fluid must have a common component of velocity normal to the sur-
face. It is found that the pressure emitted by each element of the surface
must be proportional to its normal component of acceleration.

The contributions made by the emitted waves to the pressure at any
given point in the fluid will be retarded in time because of the time re-
quired for the waves to travel from their point of origin. The following ex-
pression is obtained for the pressure at any point Q on the surface at time

p - 2p 1 - -f 1i,,,dS + p (131

where p0 is the total hydrostatic pressure, including atmospheric pressure,

pi is the incident pressure at the point Q and at the time t,

p is the density of the fluid,

c is the speed of sound in the fluid,

dS is an element of area on the face of the target,
z is the component of displacement of dS in a direction perpendicular

to the initial position of the target, measured positively away from

the fluid, and

# is the distance of dS from Q.
i denotes d2z/dt2 , and the subscript t - s/c means that each element

dS is to be multiplied by the value of its acceleration i not at the

time t but at the time t - 8/C.

The integration extends over the entire face. See the Appendix, Equation
[100],.and Figure 14.

The factor 2 in Equation [133 may be regarded as a reflection ef-
fect arising from the mere presence of the target. The term containing the
integral represents a relief of pressure, as explained by Butterworth (1), or
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an emission of negative pressure caused

by acceleration of the face of the tar-

get. Positive pressure is emitted, how- -

ever, by any element at which s is nega-

tive. The release or emission effect is

propagated from one point to another in

the fluid at the speed of sound.

The surface on which the pres-
sure is calculated has been supposed to

be the surface of a solid body. Nothing

would be altered, however, if the sur- Figure 14 - Diagram Illustrating
the Theory of the Incidence of a

face were, wholly or in part, merely a -Wave of Pressure upon a Nearly

geometrical plane drawn in the fluid; in Plane Moving Surface
Equation [13] z will then be merely the The preauwe Pl due to incident ways causesa not pressure p on tkA surface; # denotes

displacement of the fluid itself perpen- the distance of an element of area dS from a
point Q on the surface, at which the displace-

dicular to the surface. This extension ant of the surface is s.

uf the interpretation will be useful

later.

The theory of the relief pressure as described here constitutes the

mathematical theory, for a plane surface, of the process of diffraction or

equalization of pressure which was described in general terms on page 7.

MOTION OF AN INITIALLY PLANE PLATE OR DIAPHRAGM

OF UNLIMITED LATERAL EXTENT
So long as the plate or diaphragm remains approximately plane, its

equation of motion can now be written in the form

d2d~z

M [T-P 14]

where m is its mass per unit area, z is its displacement at any point perpen-

dicular to the plane occupied initially by its face, p, is the total Incre-

meat of pressure caused, directly or indirectly, by incident waves, and

# " P0 - P; +  . (15]

where po is the total hydrostatic pressure, p; is the pressure on the back of

the plate and p, is the net force per unit area in the direction of z due to

stresses in the plate. Motion parallel to the initial plane is assumed to be

negligible so far as inertial effects are concerned. Here m, z, p, and # may

all vary over the plate. Inserting the value of p. - p - p. from Equation

(13]
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d~ d8S [161.' 2 p i + M -2 - " 1

It is readily shown that, if the plate remains accurately plane,
this equation reduces to the familiar one-dimensional equation; see the

Appendix. The relief term, or the term containing the integral in Equation

[16), becomes the last or damping term in Equation [1]. Of, if plane waves
are incident at an angle 0, and if 0 - 0, so that the elements of the plate

move independently, Equation [16] becomes, as shown by Taylor (4),

d2z + P1
MdtT+ ose d , [17]

The general equation is thus seen to be consistent with others that can be

obtained more simply. The case of spher-

ical waves has been considered by Fox

2b (15).

PLATE OR DIAPHRAGM OF FINITE EXTENT
0 SURROUNDED BY A PLANE BAFFLE

In tests, a plate of diaphragm

is commonly mounted in a support that ap-

ing constitutes a first approximation to

the mounting of a plate in the side of a

ship. In some cases it may be necessary

Figure 15 - Diagram Illustrating to allow for motion of the support.
Incidence of a Wave on a Plate If only part of the structure
Mounted in a Movable Baffle Just considered consists of a movable

The diplaceient of the baffle, eamed plate or diaphragm, while the reminder
plane, is sb; the displaceient bf any

point of th plate In ,. forms a fixed plane baffle, the integral

In Equations (13] or [16] need be ex-

tended only over the movable part. Or, more generally, as is illustrated in
Figure 15, if the baffle Is itself movable as a whole but remains plane, the

equation for the motion of any point of the plate can be put Into the form,

d's dx&t fL. . d 2'g_ d L d8 [18]

d t 2wJ -d (18]

where s, is the displacement of the baffle, all quantitiep are tPken at time

t except the values of the integrand, and the integral extends only over the

plate; see the Appendix, Equation [109].

Comparlaon of the last equation with Equation [16] shows that the

principal effect of motion of th'e baffle is to relieve the load pressure on
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the diaphragm to the extent of pc times the velocity of the baffle, oe to in-

crease the pressure to this extent if the baffle is moving toward the side of

incidence. The factor pe is the same as the ratio of the pressure to the

particle velocity in a plane wave, or about 70 pounds per square inch for
each foot per second of velocity. If the velocity of the baffle is variable,

however, the release effect is modified by the presence of the term in

d2zb/dt2.

Other useful forms of the equation are possible. In the case of a

circular plate of radius a, for example, with everything symmetrical about

the axis of the circle, Equation [16] as applied to the central element of
the plate can be written in the alternative form

mzi - 2p, +~ -e PCb(t - - &(t - 11]- Pf t_. dr [19]
0 C

Here the first three terms refer to quantities at the center and at time t,

and in the integral s has been replaced by r, the distance from the center of

the plate; also, because of the symmetry, it is possible to write dS = 2irrdr.

The part of the release integral that contains d 2Z/dt2 has been transformed

as In Equation [105] of the Appendix. For generality, it has been assumed

here that only the part of the baffle lying betwoen r - rl and r - r2 is mov-

able, while the remainder is at rest; i,(t) is the velocity of the movable

part at time t.

If the entire baffle is movable, the equation becomes

mi - 2p +~ -pc Zb(t C ) -pf i~r dr (20]
0

FINITE PLATE OR DIAPHRAGM WITH NO BAFFLE

For a plate or diaphragm forming one side of an air-filled box, an

approximate equation of motion may be obtained from the last equation by the

following argument. Equation [16] should hold even if part of the "plate" is
reduced to a mere imaginary plane drawn through the fluid; see Figure 16.
Then, in the integral, at elements dS located on the imaginary plane, d2/dt 

2

refers to the acceleration of the fluid. These values of d2z/dt2 are not
known accurately because the pressure in the fluid is modified in an unknown
manner by the presence of the plate. For an approximate result, however, we
may resort to the assumption that is comnonly employed with success in phe-

nomena of optical diffraction.
Let it be assumed that the disturbance in the fluid beyond the edge

of the plate is the same as it would be if the plate were not there. Then,

if the incident wave is plane and falls normally on the plate, d2z/dtz is



CONFIDENTIAL 24

/ i/ / uniform over the plane beyond the edge, as it
Watr / ,/ would be if a plane baffle were present, hence

/ Equation [183 can be used In p1.ce of Equation

[16]. Here dsb/dt is now merely the particle ve-

/ ir locity in the incident wave or p,/pc, so that the

/ term containing this velocity becomes -pi. Thus

/ / Equation [18] becomes, for the motion of any ele-
Diaphragm 1 ment of the plate,

Figure 16 pi t / 2 _L - [21)
- An Air-Backed pcdt 2 - r P at 1_-

Diaphragm Forming OneSide of a Box or, if the incident wave varies slowly enough,
The preeat e due to incident waves
is Vi. The broken lines represent approximately,
a continuation of the plane of the
diapragn into the water. d2  p 2 dSidt + 2  f (d z) d[22]

plate C

In the special case of axial symmetry, again, a simpler alternative

equation is useful. If the plate is a circle of radius a and if everything

is sy nmetrical about its axis, then similar changes in Equation [109] of the

Appendix give, for the motion of the central element only, the approximate

equation
d2s

o , d,. 123 ]
'K=t=C0 Va c

in which d 2 z/dt 2 on the left and p,(t) and # refer to time t, while pi(t- a/c)

is the value of p, at time t - a/c, r denotes distance from the center of the

plate, and dS has been replaced by 21rrdr.

Thus the diffractive release of pressure around the edge of the

plate has the effect of diminishing or even eliminating the doubling of the

incident pressure that results from reflection.

If the plate is mounted in a supporting ring with a plane face,

this ring can be treated in the equations as if it formed part of the plate.

NOTION OF THE FREE SURFACE OF A LIQUID
Equation [16] can be applied also to the motion of the free surface

of a liquid. This can be done by setting m - 0, replacing 0 by po - p, where

PO is the hydrostatic pressure at the level of the surface and p.is the ex-

ternal pressure on the surface itself, and interpreting s as the displacement

of the surface. Atmospheric pressure is included here in p., which may dif-

fer from p because of an accelerating pressure-gradient in the liquid.
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The resulting equation can be written in the form

P fld2zs SS (24]

In this form the equation holds, indeed, quite generally, for any liquid sur-
face that is nearly plane and effectively unlimited in lateral extent, even

when the surface is partly or wholly in contact with a solid body. See Ap-

pendix, Equation [103]. The equation fixes the acceleration of the surface

at each point in terms of previous accelerations at all points and the vari-

ous pressures.

Furthermore, with similar changes, Equation [18] can be applied to
the motion of the liquid surface as exposed in a hole in a movable plane baf-

fle lying on the surface.

It may be noted that the liquid surface does not exhibit the same

kind of resilience that is characteristic of ordinary elastic bodies. Thus a

rubber ball dropped onto the flcor bounces back. If the surface of a liquid

similarly impinges upon a rigid obstacle, however, there is no rebound. Dur-

ing the impact the surface undergoes momentary negative accelerations of

large magnitude, and Equation [24] shows that these accelerations must be ac-
companied by a positive pressure acting on the surface, and also, therefore,

on the obstacle. However, on the assumption that only a limited part ol the

surface was in motion, the integral in Equation [24] ultimately fades out

without changing sign, and the corresponding part of p must, therefore, do

the same. Since negative values of p do not occur, there is no tendency for

the liquid surface to leave the obstacle.

Elastic rebound such as that of the rubber ball is exhibited only
by bodies, solid or liquid, whose dimension perpendicular to the surface of

contact is effectively finite.

IMPULSE PER UNIT AREA DUE TO THE WAVES
Before considering solutions of the equations of motion, the fol-

lowing interesting conclusion concerning the impulse may be noted.

Suppose that the plate, after having been at rest until a certain

instant, moves in any manner and then comes permanently to rest again. If

it is surrounded by a baffle that also moves, let the baffle likewise come

to rest. Let I denote the total impulse per unit area caused by the incident

waves or fp. dt, where p, is the excess of pressure above hydrostatic pressure

and the integral extends over all time. Then, for a plate in a wide plane

baffle, it turns out that

I - 2fpjdt 125]
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where p, is the incident excess of pressure above hydrostatic pressure, or, •

if there is no baffle, approximately

I - fpdt [26]

Here fpdt represents the incident impulse per unit area.

To obtain this result, it is only necessary to multiply the equa-

tion of motion of the plate by dt and integrate. From Equation [14]

I -fp.dt _ f(r4 A )dt

When the value of d2z/dt2 is substituted here from the equation or motion,

the double integral in dt and dS vanishes, as is seen at once upon inverting

the order of integration. For example
MIXs dS daS Ai's fAS asd

fdd t  dt fS[(dz) 0]-o

since every point on the plate begins and eventually ends in a state of rest.

Thus, from Equation [16] or [18], 1 - 2fpidt, as stated. Or, if Equation

[21] is used, since f(p,/t)dt - Ap, - 0, I - fpidt, at least approximately,
in the absence of a baffle.

Similar treatment of Equation [24] gives for the surface of the

liquid, whether free or not,

f (p-po)dt - 2fpdt [271

for the total impulse in excess of hydrostatic pressure due to external

forces, on unit area of the surface, provided the surface is at rest except

during a certain finite interval of time.

The effect of the relief pressure, and hence the effect of diffrac-

tion, thus vanishes in the end if the motion of the surface Is limited in

time.

It must be assumed also, however, that the motion Is such as to

make the integrals containing dS converge.

THE PROPORTIONALLY CONSTRAINED PLATE OR DIAPHRAOG
Equations [16], [18], and [21] to [24] are of the integrodifferen-

tial type, and they are difficult to solve because s is a function both of

the time and of position on the plate. For this reason interest attaches to

the solutions of the following artificially simplified problem, which can be

handled more readily.

Let it be assumed that all parts of the plate execute proportional
motions. Then x can be written in the form
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z - s.(t) f(X, y) [281

where s, is the deflection of a certain point on

the plate, which may be thought of as its center,

and is a function of the time & alone, while

f(,y) is a shape factor represented by a fixed

function of the carteslan coordinates z,y specify-

ing position on the plate; See Figure 17. The

natural small oscillations of a plate are actual

examples of proportional motion.

After Introducing this assumption into

Equation [16], the equation can be reduced to an Figure 17 - Illustration

ordinary integrodifferential equation In s and t of Proportional Notion of
a Plate or Diaphragm

by integrating over the plate. The most useful Th deflectioa ia at every point

result is obtained if the equation is multiplied proportion to the displacesent

through by f(x,¥) before integrating, namely; co

d - 2F, +, - f f(z" [29.

where

M-fnf(z,)IdS 30]

F, - fpi f (z,)dS, 0 -f f(xy)dS ' [31a, b]

In the first integral # is the distance between the elements of area dS and

dS', which could be replaced by dzdy and dz'dy', respectively. It must be

assumed that f(z,y) vanishes fast enough toward infinity to make the inte-

grals converge.

The quantity M rep-esents an effective mass of the plate, while F,

and * represent effective forces; the last term in Equation [29] represents

an effective force due to release of pressure by the motion. The center of

the plate moves as would a mass M under a force equal to the right-hand mem-

ber of Equation [29]. Furthermore, the kinetic energy of the plate is actu-

ally equal to M(ds./dt)2/2; see Equation [115] in the Appendix.

The proportional motion of the plate may be supposed to be guaran-

teed through the action of suitable internal constraints which do no work on

the whole, so that the energy balance is not affected. These constraints

contribute nothing to 0, as Is shown in the Appendix.

Equation [29] is applicable either to an infinite plate or to a

plate mounted in an infinite fixed plane baffle; in the latter case the
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integrals extend only over the plate. The equation should also hold roughly

when there is no baffle at all provided 2F, is replaced by F.

If the baffle is movable, it is more convenient to replace Equation

(28] by

U -S6 + '(t) f(s,Y) [32]

where xb is the displacement of the baffle. Thus s refers, as before, to

the relative displacement between plate and baffle. If this expression for z

is introduced into Equation [18], and if the equation is then multiplied
through by f(z,y) and integrated over the plate, the result is

M m-- F -, 1 _ M6 dt
dt2 dt dif

- f f(,y)"dSfd2 SA f(Z) (33]
Plot. platce

where

Euff(zy)dS, M4 -fmf(;v)dS (34a, b]

Here 4 represents an equivalent area of the plate and M, an equivalent mass,
both defined with respect to interaction with the baffle.

Comparison of Equations (33] and [29] shows that the relative mo-

tion of plate and baffle is affected by the motion of the baffle in the same

way as if, with the baffle fixed, the effective driving force 2F, + 0 were
replaced by

2F, + 0 PcBds _M d2s,

Thus forward velocity of the baffle effectively decreases the load pressure.

If the motion of the baffle is accelerated, the relative acceleration of the

plate is further decreased in proportion to the acceleration of the baffle.

The absolute motion of the plate is the.n the sum of its relative

motion and the motion of the baffle.

A more convenient form of the integral In Equations [29] and [33]

is given in Equation [116] of the Appendix.

Unfortunately, the actual motions of plates or diaphragms under the

action of shock w'aves probably show little resemblance to any type of pro-

portional motion. This is brought out clearly by many observations which

have been made at the Taylor Model Basin; these will be described In other

reports. The study of proportional motion must find its justification in its

mathematical simplicity and in the hope that certain of its features as
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revealed by analysis will find their counterpart in the behavior of actual

structures.

The Non-Compressive Case

For a proportionally constrained plate, in a rigid plane baffle, a

definite treatoent can be given of the non-compressive case that was dis-

cussed previously in general terms. In the Appendix, Equations [126] and

[127], the following statement is proved:

At any time when the acceleration has been sensibly uniform, at

least during the immediately preceding interval of length Dc, where D is the

maximum diameter of the plate, Equation [29] reduces temporarily to the ordi-

nary differential equation,

d'z(M + MI)dt "2+ [35]

where

M, ()[36]

Here M, may be regarded as the effective mass of the liquid that

is following the plate; it represents the same loading of the plate by the

liquid that would occur if the liquid were incompressible. The kinetic en-

ergy of the liquid that follows the plate is. M(dz,/dt)2 /2; see the Appendix.

Thus, when the acceleration varies sufficiently slowly, the release effect

produces the loading by the liquid as calculated from non-compressive theory.

An analogous result for an unconstrained plate is difficult to ob-

tain, but it may be inferred that even in this case there will be some degree

of approach to the motion as calculated for incompressible liquid whenever

the acceleration of the plate satisfies the condition just stated. A rough

estimate of the accelerations to be expected in such cases can probably be

made by assuming some plausible type of proportional constraint and using

Equations [35] and [36].

Some Simple Types of Proportional Constraint

Several forms of proportionally constrained motion were, In effect,

treated by Butterworth (1). His formulas do not contain the factor 2 that

arises from the reflection of the wave, and the retardation in time is omitted

after a brief mention of it; hence his results are in reality those that would

be produced in incompressible water by a pulse of pressure having the same

form as the incident wave.
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If the plate moves like a piston, the shape factor in Equation [28]

becomes (s,y) - 1. It the plate is circular and of radius a, it is found,

as in Equation [128b] in the Appendix, that

M - Pas r3'

Furthermore, if m or p,, respectively, is uniform over the plate, it is ob-

vious from Equations [30], (31a], and [34a, b] that

M - irma , F - ira2p, [38a, b]

Mb -M, B- ira 2  [39a, bi

Piston-like motion involves, however, a discontinuity at the edge.

A simple type in which there is no discontinuity is the paraboloidal

form,

f(s,Y) - - , X - Z'(1- T2 [40a, b]

where r denotes distance from the center and r - a represents the fixed rim.

A spherical shape is scarcely different so long as the curvature remains

small. In this case, as in Equation [128a] of the Appendix,

M, - 0.818 pas [41]

and if n or pi, respectively, is uniform, Equations [30], [31al and (34a, b]

give

M - -Kmag, F.- -M ap, [42a, b]
8 2

3b M LM 1 W6 [43a, 10

see Appendix, Equations [120] and [21].

Approximately spherical or paraboloidal shapes are produced by

static pressure, but under explosive loading more pointed shapes appear to be

commoner-; see Figure 18.

The results just cited suggest that in general the formula

M- 0.8 M [4

plp,.18 - Typical Profiles of a Diaphragm Deflected by a Non-Contact
.lgierater EXplosion (Left) or by Static Pressure (Right)

aL;4-A
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may be a good approximation; for the paraboloidal motion, 0.8 is replaced by

0.78, and for the piston motion, by 0.84*.

A third type of some interest is

(I - ST) -[)Sa, b]

for which, as in Equation [132] of the Appendix,

M, - i'pas [46]

and, if pi is uniform, Equation [31a] gives

F, - 21rp, f(I - rdr - 27aep, [Ii7]
0

This form of f(x,p) represents the distribution of velocities with which, ac-

cording to non-compressive theory, liquid should begin to issue from a circu-

lar hole because of a sudden
application of pressure; see 2.0

the Appendix, and Reference Free Surface-

(1). Here the liquid surface

is assumed to be plane initial- -0 -

ly. The average velocity is
2ds/dt. As the motion con-

secondorderPiston
tinues, however, second-order .0

effects become appreciable and dd

the usual vena contracta de- Porokd,

velops; at the edge it will 0,6 - .,- r

begin forming immediately. o.4"

The distribution of

velocity over the plate Is il-
lustrated for the three types o 02 ( or 0 6 Qi7 0. 0.9 .0

of motion in Figure 19.
In all three cases Figure 19 - Distribution of Velocities in

a rigid baffle beyond the plate Three Types of Proportional Notion,
for a Circular Diaphragm

or hole has been assumed. If . .. tko velocity perpendicular to the initial pleas
the plate merely forms one side at a distance r from the center of the diaphrag wbose

radius is a. The velocity Is shon in each case on an

of an air-filled caisson or box, arbitrary scale.
the estimation of AV, is more

difficult, From the consideration of a solvable case in the Appendix it ap-

pears that the absence of a baffle might reduce M, for the paraboloidal dia-

phragm by a factor of about 2, and for a diaphragm moving like a piston by a

factor nearer 3.
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It may be noted that for the circular piston and for the parabo-
loidal form tht integrodifferential equation can be replaced without great
error by a more easily handled difference-differential equation; for example,

Equation [29] is replaced by

d- ! -+b- -k--1
dt- + dt 1',T M

or Equation [33] by

d 2  d . dS +Md 2 Zd t - ' cB __ k W

b[z, - x,,_-.] - 2F+ [9

Here x,,,r denotes the value of z, at time t - T, where T is a retardation
time of the order of the diffraction time T., while all other quantities re-
fer to time t. If thinning of the diaphragm is neglected, k and b are con-

stants; see Equation [125] in the Appendix.
An equation rather similar to Equation [48] but containing an In-

tegral was used by Kirkwood in developing a theory of damage in the absence

of cavitation (6) (7) (8). His equation was obtained for the central ele-
ment of the diaphragm on the assumption of a paraboloidal form, without the

provision of any mechanism for the maintenance of this form. In the theory
as developed in the present report, the form is assumed to be maintained by

suitable constraints and an equation of motion for the entire diaphragm is

obtained. The results in practical cases differ little, however, and it is
doubtful whether either type of theory represents the motion of an actual

diaphragm very closely.

THE REDUCTION PRINCIPLE
It has already been noted that unde.r suitable circumstances suf-

ficiently accurate results can be obtained from non-compressive theory, in

which the compressibility of the liquid is ignored. This is in reality a

special case of a more general principle. The action of a wave tends con-

tinually to change into or reduce to the type of action that is characteris-

tic of incompressible liquid. For convenience, this principle is called in

this report the reduction principle.
Consider, for example, a flat-topped wave form in which the pres-

sure rises discontinuously to a value p, and then remains at this value for

a considerable time. The discontinuous wave front is propagated past an ob-

stacle in strictly rectilinear fashion, leaving a perfect shadow behind the
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obstacle. After the front has passed, however, lateral equalization of
pressure sets in and produces the phenomena known collectively as diffrac-

tion. Pressure builds up in the shadow; and all modifications of the pres-
sure field that may have been caused by reflection in front of the obstacle

fade out. The final result is a uniform pressure of magnitude p, all around
the obstacle, such as would be inferred from the ordinary hydrostatic, non-

compressive theory. The time required for approximate equalization of the

pressure Is roughly equal to the diffraction time for the obstacle, or to
its radius divided by the speed of sound in the liquid.

Any sudden increment of pressure, positive or negative, behaves in

a similar manner. At first, its effects exhibit the characteristics of wave

action; then the effect changes in continuous fashion until it reduces to the

effect that would have beqn produced in incompressible liquid by the same in-
crement of pressure.

Furthermore, any pressure wave can be regarded as a succession of

small increments. Thus the usual conclusion is reached that waves much
shorter than the d~ameter of an obstacle will behave in a manner strongly
resembling rectilinear propagation, whereas waves that are much longer will

act more nearly like a static pressure. The non-compressive case previously

noted is one in which changes of pressure occur 3o slowly that reduction is
practically complete all of the time.

The reduction principle is difficult to formulate mathematically in
the general case, but an exact expression of it is easily obtained for a

preportionally constrained plate. In this case the chief content of the

principle, as deduced in the Appendix, is the following. Suppose that the
plate has been at rest for a time exceeding D/c where D is its greatest di-

ameter. Suppose also that thinning of the plate may be neglected, so that M
and M, may be treated as constants. Then, during any subsequent interval of-

time equal to Dic, both acceleration and velocity take on at least once the

non-compressive values as calculated for the time t at the end of that in-
terval, namely, from Equation [351,

d 2 X 2 F+0. dX = f([52a, b+
M+M,' dt M+M,[

Here M, is the mass duo to loading by the liquid as given by Equation [36],
Fj and the derivatives of z stand for values at time t, and fFidt extends

from the beginning of the action up to that time.
From this statement it is fairly clear, after a little reflection,

that, if 2F, + 0 is constant, d2z/dt, must oscillate about the non-

compressive value as given by Equation (50a) and gradually settle down
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to this value; whereas, If 2F, + 0 continually increases with the time,

d's 0/dt2 must exceed the non-compressive value, while if 2F + 0 decreases,

d s,/dt2 must be somewhat smaller than the non-compressive value. Analogous

statements hold for ds,/dt.

IMPULSIVE EFFCTS

The following two special cases are of interest, partly because of

the light they throw upon the qualitative aspects of the action.

Steady Pressure Suddenly Applied

After a plate or diaphragm has been at rest and free from wave ac-

tion for a long time, let a wave of constant pressure suddenly begin to fall

upon it. During the quiescent period, # - 0 in Equation [16] in order to

keep diz/dt2 - 0, and for a short time thereafter # will be small. In the

neighborhood of any point of the plate, furthermore, the incident wave will

approximate to a plane wave incident at a certain angle. For a short time

after its arrival, therefore, the equation appropriate to plane waves, Equa-

tion [17], can be usod. Each element will begin moving according to this

equation independently of all others, and every element will execute the same

motion, but with a certain displacement in time if the incidence is oblique.

The plane-wave equation will hold until waves of relief pressure

arrive, coming from elements of the plate whose motion differs in other ways

than merely by a time difference due to oblique incidence. Thereafter the

action becomes more complicated and Equation [16] must be usel. In many

practical cases, however, the action of a shock wave Is almost entirely com-

pleted before the simpler Equation [17] begins to fail noticeably.

If the plate is proportionally constrained, further light can be

thrown upon its later motion. In this case, for a plate mounted in a rigid

baffle, if * - 0, Equation [29] becomes initially

Mdtz-F- A dt [51]

where,

A f [ff(s, p)j" dS [52]

and represents an effective area; see the Appendix, Equations [140] and [141].

This is the analog for the plate as a whole of Equation [17] for the individ-

ual elemets. If the mass per unit area m is uniform, A - Miw, where M is

the effective mass as defined in Equation [30]. If the plate also moves pa-

' .aboloidally, as represented by Equations [40a, b], A - ir 2/3, or a third of

actual aroa.
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D

As the elapsed time approaches the diffraction time, Equation [51]
fails and the complete Equation [19] must be used. As soon as the time con-

siderably exceeds the diffraction time, however, a simple description of the

motion again becomes possible. The motion then approximates rapidly to the

motion that would have occurred if the water had been incompressible. This

conclusion may be inferred with sufficient cogency from the reduction princi-

ple just described.

From this principle, and, in particular, from Equation [50a], it
is sufficiently clear that the acceleration of the plate will take on the

non-compressive value as stated in Equation [35] within a time less than D/e,

and will oscillate thereafter about this value with a rapidly diminishing am-

plitude of oscillation. The initial acceleration, which is 2F/1 from Equa-

tion (51], is relatively high because the effective mass is at first that of

the diaphragm alone, but as the loading by the liquid takes effect the accel-

eration decreases toward the non-compressive value. Because of the high ini-

tial acceleration, however, the velocity remains permanently somewhat In

excess of the non-compressive velocity.

The transition from one type of motion to the other is easily fol-

lowed in detail if the accurate integrodifferential equation is replaced by

the approximately equivalent difference-differential equation, Equation [48].

This equation is readily solved in simple cases, provided thinning of the dia-

phragm is neglected, so that k and b are constants.

In the case under discussion, s. - 0 and i, - 0 up to a certain in-

stant, which may be taken as t - 0, and thereafter 0 = 0 and 2F/M is equal
to a constant. An example of the results obtained from Equation [48] for

this case is shown in Figure 20. The curves represent the central accelera-

tion i, and velocity i, of the diaphragm as functions of the time t; the non-

compressive values as given by Equations [50a] and [50b] are shown by straight

lines. The unit of time is taken to be the diffraction time, or T, - a/c,

where c is the speed of sound in the adjacent liquid and a is the radius of

the diaphragm, assumed circular; and the incident pressure is assumed to have

such a value that the initial acceleration, 2FA/M, is unity. With a constant

incident pressure of different magnitude, all ordinates would be changed in

proportion to the pressure. The figure refers to the special case in which

p6/Mm 12.5 and hence M, - 9.7M; then k - 13.4 and b - 9.34.

The figulre would be applicable, for example, to a 10-Inch steel

diaphragm of thickness 0.05 inch, acted on by a steep-fronted wave in which

the pressure behind the front is uniformly 1700 pounds per square inch. Then

s, is in inches, and the unit of time is Td - 5/59 - 0.085 millisecond.

The figure confirms the statements just made as to the approach to

non-compressive values, which is very rapid in the case represented. The
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Figure 20 - Curved for a Diaphragm under Uniform Pressure Suddenly Applied

The diapinep is coatrained to move peaboloidally; 0. ia the deflection of its center, s is the
time, an Td is tih diffraction time, equal to the radius of the diapbragm divided by the snod
of sound. The curves represent actual values of acceleration and velocity; the line, represent
the non-conpre sive values. The plot in drawn for a particular case, as explainod in the text,
ae is only appozimto.

figure would not be greatly changed if the more correct integrodifferential

equation were employed, Instead of the approximate difference-differential

equation.

Impulsive Pressure

The second special case that is of particular interest is the fol-

lowing. After the plate has been at rest for a time exceeding De, let it be

given by impulsive action a velocity i, - i' and then left to itself, with

F- - 0 = 0. In this case it is evident, by integration of Equation [48] dur-

ing the time of impulsive action, that

0- - MF i dt

whereas according to the reduction principle the velocity ds,/dt will ap-

proximate within the diffraction time to the non-compressive value as given

by Equation [50b] or
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Figure 21 - Curves for a Diaphragm Loaded Impulsively

For furtber explanation, see the text and the note under Figure 20.

o- M+ +MJ" M+M, 'o

Thus the initial velocity soon becomes reduced in the ratio M/(M + Ma) as the
loading by the liquid comes into play.

The corresponding curves for the velocity ds,/dt and for x. as ob-
tained from the approximate difference-differential equation, for v. - 1 and
pa/i- 12.5, are shown in Figure 21; the horizontal line represents The

curves and lines happen to be exact copies of those in Figure 20. The rapid

approach to the non-compressive velocity is again evident.

Solutions for either of these two simple cases could be utilized to

construct by addition the general solution of Equation [48], provided 0 is
known as well as F. The case first discussed corresponds to Heaviside's

unit function.

MOTION OF A PLATE OR DIAHRAGM CONSTRAINED ONLY AT THE EDGE
The accurate treatment of a plate that is not constrained as to

shape presents a very difficult problem even on the hydrodynamic side, apart

fror all the difficulties that aribe from the varying elastic and plastic

0
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behavior of the material of the plate. All complications due to the material

of the piate have been hidden in the present treatment under the symbol * or
0 and no detailed consideration of them will be attempted in this report.

In the absence of exact solutions, semiquantitative results of some

utility may be obtained by assuming a convenient or plausible type of propor-
tional constraint and applying the corresponding results of analysis. A

principle equivalent to the reduction principle may be expected to hold, al-
though, as has been stated, it is not easy to prove or even to formulate in

the general case. The velocities generated by a short impulse of pressure,

for example, should be relatively large at first, but they should decrease,

within a time less than the diffraction time, approximately to the velocities

that would have been generated if the water had been incompressible.

CAVITATION AT A PLATE OR iIAPHRAON

The analysis is readily cxtended to cover the occurrence of cavita-

tion at the interface between a liquid and a plate or diaphragm that remains
approximately plane, provided suffi-

/ ciently simple assumptions are made

concerning the laws of cavitation. Let

/ it be assumed that cavitation sets in
/ th p "

Ut, wherever the pressure at the interface
/ sinks below a fixed breaking-pressure

p,, and let all complications due to

1/ut" surface tension or to the projection of
//S /spray from the free surface of the liq-

/ / uid be ignored. The cavitated region

/ will thus be assumed to have a sharp

bounding edge on the diaphragm, as il-
Figure 22 - Illustration of the lustrated in Figure 22. The results

Edge of a Cavitated Area
In the left-hand figure the edge is advancing at obtained on these assumptions will be
speed U over the face of the diaphram. In the described here, with reference for fur-
rightband figure it is receding; at the edge, te
the tangent to the liquid sace makes en le ther details to the Appendix; .hey
# with the tangent to the diaphregm, and, as the should find at least qualitative appli-
edge passes, each point of the liquid surfac c
changes its normal velocity from it o th cation to actual cavitation at an n-
normal velocity i. of the pute. terface, unaccompanied by cavitation in

the midst of the liquid.

In practical cases the cavitation should usually begin, if at all,

during the initial phase of the motion, and at a central point where the in-

cidence of the waves is nearly normal. For this phase, therefore, the formu-

las for the free plate should hold approximately, as discussed on page 4.
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There remain then, for discussion, the process by which the region of cavita-

tion spreads over the plate, the subsequent motion of the free liquid surface,

and the final process by which the cavitation is destroyed.

After cavitation has begun, the edge of the cavitated region will

advance over the plate for a time as a breaking-edge, enlarging the area of

cavitation; then it will halt and eventually return as a closing-edge; see

Figure 22. It must begin Its advance from the initial point at infinite

speed; and it may happen that the cavitation spreads instantaneously over a

finite area. Similarly the cavitation may disappear simultaneously over a

certain area, in which case the closing-edge may be supposed to move at an

infinite speed. In other cases the edge will move at a finite speed.

The process at the edge turns out to be distinctly different ac-

cording as U, the velocity of its propagation in a direction perpendicular

to itself, is less or greater than e, the speed of sound in the liquid.

If U < c, It appears that no discontinuities of pressure or par-

ticle velocity can occur at the edge of the cavitated region, and U is mere-

ly the velocity with which the liquid next to the edge is streaming over the

plate. This velocity, in turn, is determined jointly by the incident wave

and by all of the diffracted waves emitted by various parts of the plate,

and no simple statement in regard to its value can be made.

If UZ c, on the other band, the propagation of the edge Is essen-

tially a local phenomenon, and mathematical treatment is easy. For effects

can be propagated through the liquid only at the speed c, and no such ef-

fects coming from points behind the moving edge can overtake it; thus Its

behavior must be determined solely by conditions just ahead of it, and these

in turn cannot be affected by the approacf of the edge. For the same reason,

the analytical results are not limited now to small displacements of the

plate. Impulsive effects also become possible.

For a breaking-edge moving in this manner,

ap

apU - --- [4

On

where Op/Ot is the rate of change of the pressure in the liquid ahead of the

edge, as determined by the incident pressure wave and the motion of the plate,

and Op/On is the gradient of this pressure over the plate in a direction nor-

mal to the edge; see Equation [147] i.n the Appendix. Here, necessarily,

&p/ot < 0. Thus the edge of the cavitated area will advance toward the un-

broken side at the speed U k c provided - Op/dt ? c OjWOn.
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As the edge advances, the particle velocity of the liquid in a di-

rection normal to the plate changes Impulsively by

ph • [55]

where p, is the pressure in the cavitated region, assumed uniform; see Equa-

tion (149] in the Appendix. Or, If U is infinite, as in the instantaneous

occurrence of cavitation over a finite area,

Ai - P1 P. (561

as In one-dimensionai motion. If p6 - p., or If U- c, Ai - 0. Otherwise
Ai 1 0, since the liquid cannot penetrate the plate; this agrees with the

fact that P6 1 P,.

The analogous formula for a closing-edge is

=(571tan e

where it and i. are normal velocities of liquid surface and plate just ahead

of the edge in the cavitated area, and 0 Is the angle at which the edge meets

the plate; see Equation (152] in the Appendix, and Figure 22. Thus U c on-

ly if e, - c tan 6. As an exceptional case, it appears that the liquid

surface might roll onto the surface like a rug being rolled onto the floor,

with it - a, and 0 - 0 at the edge of contact. If it > i., the pressure in

the liquid adjacent to the plate rises impulsively, as the edge passes, from

p, to p, + Ap where

sip -f PC - [581

or, if U- , as where closure of cavitation occurs simultaneously over a

certain ares,

Ap - PC(z1 - 5 [91

See Equation [151] in the Appendix. Equation [591 is familiar in one-

dimensional water-hammer theory.

Before and after the passage of the edge, each element of the liq-

uid surface will follow one of the differential equations already written

down. In the cavitated region this will be Equation (24] or

2 ffd \ S- 2p, + p0-p. [60]
21r kd ),'.t -
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in which p, represents the actual pressure p on the surface. At the same

time, elements in contact with the plate will be moving according to some

other equation such as Equation [16]. The symbol (dzxdt2)_. in any equa-

tion may be taken to refer always to the acceleration of an element of the

liquid surface, whether free or in contact with the plate.

The Impulse

It is noteworthy that the total impulse on any point of the plate

should not be affected by the occurrence of cavitation. For the pressure on

the plate Is always the same as that on the liquid surface, according to the

assumptions that have been made. Hence, from Equation [24], the total im-

pulse per unit area on the plate due to the waves, up to a time at which the

plate has come to rest and all effects of diffraction have ceased, Is

I - f(p - p) dt- 2fpdt [61

where p, is the pressure in the incident wave. The integral of the left-hand

member of Equation [24] with respect to the time vanishes in the end, since

ds/dt begins and ends at zero. The intervention of cavitation has no effect

upon Equation [61].

A Proportionally Constrained Plate

The problem becomes much simplified and can be treated completely

if the very arbitrary mathematical assumption is made that both plate and

liquid surface move proportionally and in the same manner, so that their dis-

placements are both represented by equations of the type of Equation [28] but

with different values of z,(t) during the cavitation phase. Cavitation then

appears and disappears simultaneously at all points of the plate. Successive

phases of such motion are illustrated in Figure 23.

Figure 23 -Illustration of Cavitation
According to the Assumption of . / /

Proportional Constraint
The left-hend figure ohs the initially flat dia-
pbrW; in the aiddlo, cavitation has occured, but
both dipbrep and liquid mwfac. are aaawed to be //
deforsed in the e roportional manwr rit, the
cavitatiwi bam disappeared suidtaueoia over the/
entire dimpbrap.//
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With this assumption, the tendency for the motion to approximate

ultimately to the non-compressive type can be formulated mathematically. At
the instant of cavit~tion, an impulsive decrease may occur in the velocity of

the liquid surface, but this is not of much significance. For it may be in-
ferred from the reduction principle as developed in the Appendix that, within

a time of the order of the diffraction time Td after the onset of cavitation

at a certain time t,, the velocity of the center of the liquid surface will

approximate to the value

4l - 4+ ( (2F, + 0.) d t [621

Here Fj and M, are given by Equations [31a] and [36], respectively;

o.- ff (po - p,) f (z,,y) dzdy [63]

where po is the total hydrostatic pressure in the liquid at the level of the

point z, I on the cavitated surface, p, is the pressure in the cavity, and
the integral extends over the entire surface of the liquid under the plate;

and, finally, i.' stands for the velocity of the combined plate-liquid surface

at a time that precedes the onset of cavitation by an interval of the order

of the diffraction time; see Equation [158] in the Appendix.

The value or i, given by Equation (62] differs from the value given

by non-compressive theory only in that the initial velocity i. is not taken

at the instant of cavitation. If cavitation occurs very soon after the ar-

rival of the pressure wave, i; is practically the same as the value of i,

just before the arrival of the wave.

Similarly, after closure of the cavitation at a time t2, the veloc-

ity of the combined liquid-plate surface soon becomes

i M M . , M 1 9'
++ (F + )dt [64]Zc M+M " c+ M+M, c M l '

where M, * and Fj are as in Equation [29], zi, is the velocity of the plate
just before impact, and i: is the velocity of the liquid surface at a time

that precedes t2 by an interval of the order of the diffraction time. See

the Appendix, Equations [161] and [162], where an explicit expression for I

is given.

This is again nearly the non-compressive result. The last term in

Equation [64] represents the change in velocity of the liquid-loaded plate

that is caused by the applied forces. If i, were replaced by the velocity

of the liquid surface at the moment of impact, the first two terms would
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represent the resultant velocity as given by the usual formula for an inelas-

tic impact between masses M and Mi.

If the liquid surface is not constrained in shape, as in reality it

is not, expressions comparable to these are hard to obtain. It appears, how-

ever, that at least the order of magnitude of the effects to be expected may

be ascertained in a given case by assuming a reasonable form of proportional

constraint for both plate and liquid surface and employing Equations [62] and

[64]. The equations will hold so long as no further short-lived pressure

waves arrive to cause temporary departures from the non-compressive motion.

In using the equations it may be possible to fix the value of i.'

or ki, only within certain limits, but this may be sufficient for practical

purposes.

PART 4. DAMAGE TO A DIAPHRAGM

A FEW SWING TIMES
It is often desired to estimate the swing time of a plate or dia-

phragm. A rough estimate can be based upon the formula for the following

special case; see the Appendix, Equation [173].

Consider a circular diaphragm of radius a and uniform thickness,

held rigidly at the edge, and thin enough so that bending resistance can be

neglected. Assume that the elastic range is negligible, that the yield

stress has the constant value a, that the diaphragm, initially flat, remains

symmetrical and paraboloidal in form during its motion, and that thinning may

be neglected. Then the swing time, or time for the diaphragm to swing free-

ly through a short distance from the flat position and come to rest at Its

imaximum deflection, if there is gas at equal pressure on both sides, is

T.A- [651

where Pi is the density of the material. If the density, is 0.283 pounds per

cubic inch, as for steel, so that in dynamical units p, - 0.283/386, if a -
80000 pounds per square inch, which may be a reasonable nominal estimate for

mild steel under high strain rate, and if a is in inches and T, in milli-

seconds,

T, W-17-4 0.0 6 1a [b6]

If the diaphragm Js mounted In a rigid baffle with liquid of den-

sity p, on one side, the hydrostatic pressure In the liquid being the same

as the pressure of the gas on the opposite face, then the swing time is in-

creased, as a result of loading by the liquid, to
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ira *° I/f( 67]V -, ( I +. 0. 78 (67

where h is the thickness of the diaphragm. For the same steel and for water

this becomes

T,O .061 I. + 0.o. o0a milliseconds [68]

provided a and h are expressed in the same unit. If there is liquid on both
sides of the diaphragm and of the baffle, having a density p, on one side and
p. on the other, p, is to be replaced in Equation [67] by p, + P2.

If the diaphragm is mounted in one side of a gas-filled box only

slightly larger in diameter, the coefficient 0.78 in Equation [67] is changed
to something like 0.4, and 0.100 in Equation [68] to roughly 0.05.

The effect of the elastic range is discussed in the Appendix.

DEFLECTION FORMULAS FOR A DIAPHRAGM

From a survey of the preceding analytical results it appears that

only limited progress has been made as yet toward an exact treatment of the

hydrodynamical side of the problem that is presented by the impact of a shock

wave upon a diaphragm. The situation is somewhat better as regards the be-

havior of the diaphragm itself, although even here complexities and uncer-

tainties are encountered because of work hardening, increase of stress at

high strain rate and thinning of the diaphragm. It is not the purpose of

this report to attempt an accurate theory of the plastic deformation of a

diaphragm. Simplified assumptions as to its behavior will be adopted in

order to obtain a few approximate formulas possessing a limited usefulness.

Let the yield stress a be constant. For steel this is more nearly

true at high strain rates than at low rates. Let both the elastic range and

the thinning be neglected. Actually, the thinning may extend to 1/3 or even

2/5, but its effect is at least in the opposite direction to that of work

hardening. With these assumptions the fundamental equation for plastic de-

flection can be written in the simple form,

E - ahAA [69]

where E is the net energy delivered to the diaphragm, h is its thickness and

AA is its increase in area due to plastic flow.
For a circular diaphragm deflected into a spherical form, AA = rz2

in terms of the central deflection z; this formula is almost correct also for

the paraboloidal form. For a circular cone,* AA = rz2/2. Profiles for these

* Shapes between spherical and conical arp often produced by underwater explosion; they are nearly

hyperboloidal, as Ilu trated in Figure 24. Certain obsevations indicate that in the course of the
damaging process nearly conical shapes may occur momentarily.
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shapes are compared in Figure Spere

24. For a rectangle w, and W2  Coneooi

on a side, deflected into the 
C

shape characteristic of mem-

brane vibration in the lowest Figure 24 - Curves Illustrating Four Types

mode, so that the deflection of Diametrical Profiles for a Diaphragm

at any point is z sin-sin

AA 8--W + W2 X\ 2

\ 8 W 2  WI)

for small z. Thus for circle, cone and rectangle, respectively, for small z,

2 8 1 W ,)z [a, b, c]

For a square or w = W2, E is ir/4 times as great as for a circle at the same

central deflection.

A correction for the elastic range is easily made, if required,

provided it is assumed that the elastic constants are unaltered by plastic

flow and provided resistance to bending may be neglected. During deformation

up to the elastic limit the area will increase by a definite amount AAo.

Since the stresses are at each instant proportional to the increase in area

up to that instant, the average stress will be v/2 and the energy absorbed

up to the elastic limit will be

E,= -9- AA,

or half what it would be If the stress were constant. Thus, if E denotes the

total energy absorbed by the diaphragm, initially flat, up to a maximum in-

crease of area AA.,

E lvhAA. - ak (AA, - hA.)

If AA is the residual increase in area after removal of the load, AA -

AA,,- AA,. Hence

Em - h (hA . - .14A.) VA AhA + -1 AA.) [71]

In general, the increase in area Is proportional to the square of

the central deflection, for sihall deflections. Hence, if the central deflec-

tion is z, to the elastic limit, z, to the maximum under full load and z for

the permanent set, from Equation [71]

- Z!, i. _ m 
2+ [72a, b]
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where z1 is the deflection calcu-

Incident Pressure lated from E with neglect of the

elastic range, that is, from E.Displacement of

Oiaphragm hAA1 where AA1 corresponds to z1,

or by putting z - z, in Equation

[70a, b, c]. It is assumed here

T, >> Td that the same shape occurs at all

deflections mentioned.

In a few special cases,

T Time T formulas for the deflection pro-

Figure 25 - Illustration of Case 1 duced In a diaphragm by a shock

Relatively Long Swing Time wave can now be obtained by bring-

The awing time of the diapbrap, T#, is uch longer ing forward suitable formulas for
than either the time cow tent Tu of the incident

pressure wave or the diffraction time Td .  E.

CASE 1: Relatively Long Swing Time, No Cavitation; i.e., T,>> Td and T, >> T,,

or the swing time of the diaphragm several times longer than either the dif-

fraction time or the time constant of the wave, as illustrated in Figure 25.

These conditions as to the times are usually satisfied in practical test as-

semblies bbcause.of the thinness of the diaphragms.

Let the diaphragm be mounted in a fixed plane baffle. Then, if it

is assumed to be proportionally constrained in its motion, in the sense de-

fined on page 26, its center will acquire a velocity

- [fd 73

M +M

This equation results from integration of Equation [35] in case Td 4T., so

that non-compressive theory holds; otherwise it follows from the reduction

principle as expressed in Equation [50b]. It is only necessary that stresses

in the structure have little effect on the diaphragm until the hydrodynamic

action is completed.

The combined kinetic energy of diaphragm and water will then be

converted into plastic work, so that

S2[f F dt]E r(M+ MI) W.", - M 1[74]
M +M

For a circular diaphragm of radius a deflected paraboloidally,

a2'- ras Z-, M - jrpdAh M, - 0.813p a
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in terms of the incident pressure pi, thickness h, density of diaphragm ma-

terial p. and of water p; see Equations (42b], [42a], and [44]. Hence, from

Equation [72a], for a small-central set deflection z,
, - - 1 [751

where z, is the deflection at the elastic limit and z, is found from Equa-

tions 170a] and [74] to be

I [ M+M 1 L' [76]

or

z91 a(fpidt)('~! 1 77]T 2 C'Pd I + 0.776 Pd a

If the incident wave is of exponential form, so that pi = Pe-ot, fpidt may

be replaced by p./a.

Equation [77] implies a variation of z as fpidt and hence roughly

as WkR, where W is the weight of the charge and R is the distance from the

charge to the diaphragm. This latter statement is based on similitude com-

bined with the assumption that p varies simply as I/R for a given charge.

According to similitude, the same pressures occur at distances and

at times proportional to W; hence, if f(R', t') denotes the pressure as a

function of the distance R' and of the elapsed time t' since detonation for

a unit charge or W= 1, the pressure due to any other charge at distance R

and time t is

Hence

where t' = t/W. But the value of fpidt for W= 1 is a function of R' given

by

I, (R') - ffR; 0 dt

Thus at a distance from any charge

I - fpidt - W' I, [78]

Roughly, I, (R') W/R' and hence I -W4R. Actually, according to

theoretical estimates partially confirmed by observation, the maximum pressure
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should vary more rapidly than as 11R. Furthermore, the duration of the pres-

sure wave at a given point should increase somewhat with an increase in R;

for an exponential wave this is represented by a slow decrease in a. These

two changes have opposite effects upon 1, but the first should predominate.

Thus I1(R') should vary somewhat more rapidly than as 1/R'.

A further complication arises in practical cases from the spherical

form of the wave. This further decreases the deflection somewhat; and the

decrease should be greater at small distances. Work hardening and increased

strain-rate effects in the diaphragm will also have the effect of decreasing

the larger deflections as compared with the smaller.

The final result seems to be that Equation [77] implies a varia-

tion of z as WI(W/R) where F(W'R) equals 11 (R/WI multiplied by a factor

to correct for sphericity and other minor factors; and F(WVR) might vary

either more rapidly or less rapidly than as WVR. The variation of z might

happen to be nearly as W2-IR* where n is a constant either a little greater

or a little less than unity.

Other cases in which cavitation does not occur may be treated by

integrating one of the other equations of motion. Kirkwood solved his equa-
tion for the paraboloidal diaphragm, which was mentioned in connection with

Equation [48], with the help of Fourier Analysis; the results may be found in

his reports, References (6) (7) and (8).

CASE 2: Prompt and Lasting Cavitation at the Diaphragm Only; T.<<Td,T.<<T.,

or the compliance time is much less than either the diffraction time or the

swing time, as illustrated in Figure 26. It is assumed here that cavitation

sets in so quickly that the diaphragm

acquires maximum velocity before the

pressure field has been appreciably

Displacement of modified by diffraction, and also be-
Diaphragm fore the diaphragm has moved far

enough to call appreciable stress

TM<<Te forces Into play. It is also assumed
that no further deflection is pro-

Cavitation -m duced when the cavitation disappears.

TM To These conditions as to times are com-Time
monly satisfied in test assemblies;Figure 26 - Illustration of Case 2, if cavitation occurs at all, it

Prompt and Lasting Cavitation
at the Diaphragm should usually occur relatively early

At the compliance tine Tm the diaphragm tax in the damaging process.
reached maximum velocity; cavitation is t.en Under the conditions stated,
assumed to occur as, Lu last at least until
the diaphragm has completed its outward sring. all parts of the diaphragm will be
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projected with a common velocity v,, and the entire diaphragm will acquire

kinetic energy of magnitude

B hpdAv2 [791

where A is its area. This energy will then be converted into elastic and

plastic work, and if the relation between this work and the deflection is

known, the deflection can be calculated.

Equation [72a], with zi calculated from [70a] and [79], thus gives,

for a circular diaphragm of radius a, deflected into a spherical shape,

X2- Z2 - 1 ,., 2,- aV,. P [80a, b]

For a shock wave of exponential form, p, - p, e-41, the maximum ve-

locity is given by Equation [7], and

=P" (811

where z - pc/apdh, in which p is the density of water in dynamical units and

c the speed of sound in it.

If the diaphragm is deformed into a more pointed shape, as commonly

happens, x will be somewhat greater; for a conical form, z, would be greater

in the ratio Y7. On the other hand, the actual maximum velocity will prob-

ably be somewhat less than v,, as given by Equation [71, because cavitation

will probably not occur until the pressure has sunk more or less below the

hydrostatic value; x will be correspondingly reduced.

These equations predict nearly the same variation of z with dis-

tance R from the charge as was inferred for Case I, but, for ordinary thin

diaphragms, a somewhat slowcr variation with charge weight W. The difference

arises from a decreased influence of the duration of the wave. This in-1
fluence is represented, for an exponential wave, by the factor z 1- in Equa-

tion (81]. Since z - pc/m, x increases in proportion to 1/a and hence in

the same ratio as does the factor fpdt in Equation [77]; but in practical

cases x lies between some such limits as 2 to 10, and a glance at Figure 4

on page 5 shows that in this range z -7,increases much less rapidly than

does z.

The deflection z and the projection velocity v,, may vary, there-

fore, in this case, either a little more rapidly or a little less rapidly

than as 1/R; they should vary more rapidly than as Wi, but not so rapidly

as W4. Both z, and v, might happen to be nearly proportional toWi.
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CASE 2a; Same as Case 2 with Reloading after Cavitation at the Diaphragm;

Figure 27. After the occurrence of cavitation the remainder of the shock

wave should act on the water surface and accelerate it toward the diaphragm,

unless the shock wave is so short

that its duration does not exceed the

Olsplocement of compliance time T. The effect on
oiaphrogm the water should be especially strong

•Z near the edge of the diaphragm; and

here, also, the motion of the dia-

phragm is soon checked by the support.
Cavittion- At the edge, therefore, the cavita-

Time Ttion must begin to disappear immedi-

ately, and it should then disappear
Figure 27 - Illustration of Case 2a, progressively toward the center. The

Cavitation at the Diaphragm
with Reloading boundary of the cavitated area may

This differs from Figure 26 in that the cavitation move at supersonic velocity and will
closes again and the water given the diaphrag t

a fresh impetu outward. then be accompanied by an impulsive

increment of pressure.

Such an action is hard to

fcllow analytically. The only easy case is the rather different Ideal one In

which both diaphragm and water surface are assumed to move in the same pro-

portional manner, as on page 41. Then the cavitation closes impulsively on

all parts of the diaphragm at once.

If the duration of the cavitation is considerably longer than the

diffraction time, Equation [62] gives for the velocity acquired by the center

of the water surface while free

2L f m.

where T, is the time of the beginning of cavitation; this time is assumed to

follow the arrival of the wave so closely that i,' in Equation [62) can be

dropped, and 0, is assumed to be equal to zero.

When the water subsequently overtakes the diaphragm, an impulsive

equalization of their velocities will occur, resulting in a partial reflec-

tion of the kinetic energy back into the water. If the diaphragm has already

been brought to rest by the action of internal stresses, their common veloc-

ity soon after the Impact of the water should be M i,/(M+ MI), according to

the first term on the right in Equation [64], and their combined kinetic en-

ergy should then be
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2[j F dt ]

1 (M+ + NJ) ( N .2 [821
2aM + N)MM

This energy represents a fraction M/(M+ Ma) of the energy of the moving wa-

ter, whose total magnitude is

. 2[ Fidt 2
g2

2 k Ma [83]

The fraction M/(M+ Ma) "ill, however, be close to unity in practical cases;

and If the diaphragm is moving at the time of impact, IL will take on a still

larger fraction of the kinetic energy of the water.

The kinetic energy of water and diapnragm will then be converted

into additional plastic work. The total work should thus be at least as

large as

E hp Av.~ +2' M + M

Inserting again the values for the paraboloidal circular diaphragm and v,

from Equation [7], noting that, if p, =p- e

j Fd t _ J 7a 2 80Jp-eaPaZ-
2 T: 2a

by Equation [5a], and equating the value found for E to irvWzs it is found

that Equation [81] is replaced by

-.. _ zid (+ 1+.6 &J [814]'0 C= aP p 4l-- 1+ + I 0.776 P a [4

for an incident wave of exponential form. In these formulas it might be more

nearly correct to omit M, or the 1 in the denominator under z
2 in the last

equation.

Comparison of Equation [84] with Equation [81] shows that the re-

loading increases the deflection in the ratio

w:' 4 1 + 0.776P a

Since x increases with 1/a, or with the duration of the wave, it appears from

the considerations advanced in the discussion of Case 1 that the deflection
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should probably be more nearly proportional to 1R in this case than in

either of the other two cases, but should increase with Wmore rapidly than

in Case 2.

The applicability of Equation [84] in actual cases is doubtful,

however, because of the artificial assumption that has been made as to the

motion of the water. If closure of the cavitation in reality progresses

from the edge inward, it is possible that support of the water by the outer

part of the diaphragm may greatly decrease the development of kinetic energy

in the water. Furthermore, a fixed baffle has been assumed. If there is no

baffle, or if it yields, the kinetic energy acquired by the water and the re-

sulting increase in the plastic work will be less.

CASE 3: Negligible Diffraction Time T. but Wave Not Short; Td<< T. and

Td<< T,. Under these circumstances non-compressive theory can be used. If

also T, << To, or the time constant of the wave is much less than the swing

time, the situation is that of Case 1: Otherwise the action of the wave

overlaps on that of the stress forces, and the motion of the diaphragm is

more complicated.

For a proportionally moving diaphragm mounted in a large plane

fixed baffle, quantitative results are easily obtained. According to the

simple assumptions that were made in the beginning, the net stress-force re-

sisting its motion will be proportional to its deflection; hence it is pos-

sible to write * =-kz, where k is a constant. Then Equation [35] becomes

d 2z(M + MI) d + kz, - 2F, [85]

which is of the same form as for a forced harmonic oscillator. For the ex-
ponential wave or pi = pme 

- t, F can be written Fj - Foe"f where F0 is a
constant. The appropriate solution of Equation [85], when z, = = 0 at

t = 0, is then

Z2 (M+M 2)(c 2+ 2 ) (at + -- sinpt -coeut) [86]

where

A = [871

The final deflection z,, will be the first maximum value of z; to

find it requires the solution of a transcendental equation. It may conven-

iently be expressed in terms of the deflection under a static load of magni-

tude F0 , that is, under a static pressure equal to the maximum incident
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pressure po. The corresponding static deflection, obtained from Equation

[85] with 2F replaced by F0 is

CO' k t$.]

From Equations [86] and [87]

, - 2Nx,. [89]

where the dynamic response factor or load factor N is the first maximum value
of

- 2 ( + - sin#t- cost)

Or, N is the first maximum value for x > 0 of

1 q 9'-" + qsin: - cooz)

which is the solution for y - dy/dz - 0 at z - 0 of the type equation

d,' +1- [90]

A plot of N is given in Figure 28; the abscissa represents q from 0
to 1, then i/q from q - 1 to q - . In the present connection,

_ I 2aT.. .11 [91]

where T, - 1/a and represents the time constant of the wave, while T, - ir/2
and represents the swing time or the time required for a maximum deflection
when the diaphragm is started moving from its flat position and then left to
itself.

The greatest possible value of zc, for a wave of positive pressure

is 4x,,; this is attained when the pressure remains sensibly constant during

the entire swing time. The factor 4 arises from a doubling by reflection of

the Incident wave, and a second doubling by dynamical overshoot.*
If no baffle is present, so that even the diffraction time for the

entire target Is small as compared with the time constant of the wave, the

factor 2 is to be omitted from Equations [85] and [86], and Equation [89]

becomes
z - 2Ng, [92]

In this case, for a very long wave, only the doubling by dynamical overshoot

* remains.

* See also Referenoe (25).
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tL..1 L [1 17F _

Reod N on the left 2 _T

Reo N on the right
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Figure 28 - Plot of the Dynamic Response Factor or Load Factor N
for a Harmonic System under Exponential Forcing

N represents the ratio of the maximum deflection of a harmonic system of natural frequency P, when
acted on by a suddenly applied force F. #-O, to its static deflection under a steady force FS. Here
I In the time and a and F. are constants. The plot serves also for a proportionally constrained dia-
phragm whoe owing tim is T, when acted on by an axponential pressure wave of time constant r. = 1/0;
that is, the incident pressure is p, = VMS-01where I is the time and pMand a are constants.

For the circular diaphragm already considered, zo can be calcu-

lated either from formulas already given for M, MI, F,, and T,, or directly.

For a pressure equal to p., F0 - 7r& 2p,1/2 by Equation [42b]. The curvature
of the diaphragm is given nearly enough by the approximate formula for a
sphere, 2z,/a 2 for small z,; hence the stress force per unit area normal to
the plane of the diaphragm is 0 - - 4aohz/a 2 , on the assumption of equal hy-
drostatic pressures on the front and back. Thus by Equations [31b] and [40b],

-- (1 - 2rdr - 21rohz
a 0

and k - 2wh. Hence, for small z,,,
2

O " 6 [93]

If the accurate formula for the curvature is used, or C = 2
0
2+ Ze2

a quadratic equation must be solved for s,,.

Detailed formulas have been given here for only one type of wave,
the Idealized shock wave of exponential form, The waves emitted during re-
compression of the gas globe can be approximated roughly by superposing sev-

eral exponential terms, but simple final formulas are not obtainable; see

Reference (16).
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THE FACTORS DETERMINING DAMAGE

The question is often asked, upon what feature of the shock wave
does the damage to a plate or diaphragm depend? Is it the maximum pressure,

the impulse or the energy? A related question is the law according to which

damage varies with size of charge and with distance.

The results of this and other analyses indicate clearly that no

simple and general answers to these questions are to be expected, but that in

special cases a few approximate rules can be given.

1. Maximum pressure should be the chief factor determining damage to
relatively small structures, namely, whenever the time of action of the pres-

sure greatly exceeds both the swing time and the diffraction time for the

structure, or T3 T,, T,>> Td. The rapidity with which the pressure is' ap-

plied, however, will also be of significance.

For a diaphragm of radius a inches, this condition should hold at

least for shock waves from charges in excess of 50 as rounds. This estimate

is based on T, = I/a - (W/300)*/1300 and T, < 0.1a x 103 from Equation [68].
The condition should be satisfied for Modugno gages in the presence of

charges of 10 pounds or over.

If the diffraction time is also much less than the swing time, so

that T,1i T 3 T., non-compressive theory can be used, as on page 52. If,

furthermore, the application of pressure is gradual, the action is essential-

ly a static one and the damage corresponds in the static manner to the maxi-

mum pressure. On the other hand, if the pressure is applied rapidly, the

damage will be increased in proportion to an appropriate dynamic response

factor or "load factor." If the application is effectively instantaneous as

in loading by a shock wave, and if the resistance varies linearly with deflec-

tion, as is more or less true for a plate or diaphragm in the plastic range,

the deflection should be almost twice the static value.

Since the pressure due either to shock waves or to gas globe oscil-

lations, except near the globe, varies roughly as the cube root of the charge

and inversely as the distance, the resulting deflection of a plate should

vary in the same way, under the conditions assumed, except that at great dis-

tances a large correction for the elas+ic range will be required; for the

pressure p required to give a diaphragm of radius a and negligible thickness

a small deflection x is proportional to z; see Equation [8] in TMB Report

490 (17). Thus the maximum deflection will be approximately, bW*/r, where b

is a constant, and, from Equation [72a],

b bW1 2 bW - [94]

bwde

where s, is the deflection at the elastic limit.
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The pressure to be used in calculating the deflection will be the

maximum pressure in the incident wave when the dimensions of the entire tar-
get are small as compared with the length of the wave in the water, or twice

the maximum pressure if the diaphragm is surrounded by a large rigid baffle.

2. The impultefpdt should determine damage when (a) cavitation does
not occur and (b) the time of action of the pressure is much less than the
swing time of the structure, or T,<< T,. For a diaphragm of radius a inches

this should hold for a charge of as/100 pounds or less.

This case is exemplified by Case 1 as previously described, and in

particular in Equation [77]. In Case 1 the diffraction time was also assumed
to be relatively short; but the statement just made concerning the impulse
should hold independently of the diffraction time. For the influence of dif-

fraction is confined to the relief pressure, as represented by the integral

in Equation [16], and the relief pressure in turn is determined by the motion
of the diaphragm itself. Thus the wbole motion depends upon the initial ve-

locities given to the structure by the incident wave; and since the wave, by

assumption, acts only during a small part of the swing time of the structure,

the initial velocities produced by it are proportional to the impulse, inde-
pendently of the maximum pressure or the duration of the wave.

The variation with Wand R should be as described for Case I in the

last section. To a first approximation, the set deflection z should be given

by

x - B W1[951
R

where B is almost constant for a given structure, provided the elastic range

can be neglected.

This case will probably not arise often, however, because of the

common intervention of cavitation.

3. The energy carried by the wave, fp dt/pc, does not appear in any

simple damage formula obtained from the present dynamical analysis. The

energy should be significant whenever circumstances are such that little re-

flection of the wave occurs; but such cases are not easy to define precisely.

More generally, the energy will be the significant quantity if, for any rea-
son, the plastic work stands in a fixed ratio to the energy brought up by the

wave. Since the incident energy varies in proportion to the charge weight W
and roughly as 1/R2, the deflection, which is nearly proportional to the
square root of the plastic work, will then vary as Wf/R, or

C- [96]
R
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where C is a nearly constant coefficient, so long as elastic effects can be

neglected. The factor Wi in this expression represents a variation interme-

diate between the Wi for the pressure and the Wi for the impulse, or a varia-

tion as the square root of the product of maximum pressure and impulse.

Observations generally show a variation of the deflection more or

less as in Equation [96). The plastic work commonly differs, in fact, by

less than a factor of 2 from the energy brought up by the wave. A discussion

of the data is contained in TMB Report 492 (18).

From the analytical standpoint, however, correlation of damage with

the energy in the wave appears to be somewhat of an accident, contingent upon

the range of magnitude of various factors as they occur in practice, rather

than a direct consequence of the conservation of energy. There exists no

general necessity for the plastic work done on a structure to equal the ener-

gy that is directly incident upon it according to the laws of the rectilinear

propagation of waves. Part of the incident energy may be reflected; or, on

the other hand, if the motion approximates to the non-compressive type, it is

possible for the energy absorbed by the structure greatly to exceed that

which is brought up by the wave.

In TMB Report 489 (11) it was inferred, nevertheless, from the ex-

ample of the free plate, that damage to a diaphragm should probably correlate

better with the incident energy than with the incident momentum. The argu-

ment is substantially that by which it was concluded in Case 2 that the set

deflection z might vary about as Wi. Or, it might be that the more rapid

variation introduced by reloading, as in Case 2a, would assist in bringing

about rough proportionality of z to Wi.

The analytical formulas indicate, furthermore, that in most tests

on diaphragms the plastic work should not differ greatly from actual equal-

ity with the energy that is brought up to the diaphragm by the incident wave.

For an exponential wave, Equation [2), and a circular diaphragm of radius a,

this energy will be

2 2
i 2fi 191]P

PC 2cpc 2ap2

Thus the ratio of the energy absorbed by the diaphragm, estimated as Thz4

to that brought up by the incident wave will be, for three cases treated in

the last section, from Equation [77], [81], or (84], respectively.

E 3z(1) non-compressive: E- 1 + 0.776. -- -

w- I +0_.77 P

(2) lasting caivitation-~- 4 z 1
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(2a) cavitation and reloading: E . P

In tests on steel diaphragms p/pd = 1/7.83, while a/h is of the order of 100
and z lies between 5 and 10. For such values, in the absence of cavitation,

E somewhat exceeds E,. In the case of cavitation without reloading, the fac-

tor J-1 ranges from 1/11 to 1/17, so that E is only a third or a quarter of

E,; the reloading by the water will then probably increase E to something be-

tween E,/2 and 2E.. In some cases it may happen that E = E,.

Thus, although exact formulas are not easy to obtain, it can at

least be said that the observed rough proportionality of the deflections of

many diaphragms or similar structures to W/R, or at least to the square root

of the energy in the incident wave, and the approximate equality of the plas-

tic work to the incident energy, stand in fair harmony with analytical expec-

tations.

To sum up, the analytical results suggest that the major factor

controlling damage

1. should be the maximum pressure for relatively small structures,

whose swing time and diffraction time are both small as compared with the

time constant of the incident wave;

2. should be the incident impulse when the swing time of the target

is much greater than the time of action of the pressure, provided cavitation

does not occur;

3. may be something nearly proportional or even equal to the incident

energy in some intermediate cases, or when cavitation occurs.

PART 5. ANALYSIS OF A FEW DATA ON DIAPHRAGMS

The application of the preceding formulas to recent observations

made at the Taylor Model Basin will be discussed in the report on those ob-

servations. Two other sets of test data, reported by the Bureau of Ships,

will be discussed here.

MODUGNO GAGES

The data published by the Bureau of Ships on Modugno gages (19) are

in partial agreement with the theoretical expectations set forth here.

The diameter of the gages was 1 inch for the diaphragm itself and

2.6 inches overall. Thus the diffraction time Td would be 0.008 millisecond

for the diaphragm or 1.3/59 - 0.022 millisecond for the entire gage.
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The time constant T, of the shock wave would be perhaps 0.06 milli-

second for a charge of 0.2 pound and more than 0.1 millisecond for charges of

a pound or larger.

Thus, at least for the larger charges, T. is relatively small, and

Case 3 as describet on page 52 is present. Compressibility of the water can

be neglected; cavitation should not occur. Furthermore, there should be no

appreciable increase in the pressure by reflection, except during the first

few microseconds.

The swing time of the diaphragm with water loading may be estimated

from Equation [67] as

T- o.52! [0.00083 (+ee3

26- 35000 
8.89 h/J

Here 8.89 is the specific gravity of copper and 0.000832 its density in inch

dynamical units, and the yield stress has been taken as 35,000. According to

this formula T, varies from 0.078 for a thickness h -. 0.03 inch to 0.060 mil-

lisecond for h = 0.1 inch. This is of the same order as the duration of the

wave. Hence some increase of deflection by dynamical overshoot is to be

expected.

For charges of 1 to 300 pounds of TNT, the static pressure P re-

quired to produce the same deflection as does the explosion was found experi-

mentally to vary nearly as R -1 '14 where R is the distance in feet from the

charge to the gage; see Figure 18 in Reference (19). The exponent 1.14 might

arise chiefly from the variation with distance of the pressure due to a

charge of TNT. A variation with distance of this order was found at Woods

Hole for tetryl (20). Similitude would then imply a general variation of P

as (W4R)1.14 or as W°'S R' 14; whereas the data indicate a variation more

nearly as W°'/R 1.14

The more rapid increase with W may be partly the result of in-

creased dynamical overshoot. For 1 pound, q = 2T*/(wT.) = 2 x 0.07/(0.11w) =

0.40, roughly, at which, in Figure 28, N = 1.22. For 200 pounds, q =

2 x 0.07/(0.647r) = 0.07, at which N- 1.80. Thus Equation [92] implies an

increase in the deflection due to increased overshoot, as the charge ii in-

creased from 1 pound to 200 pounds in the ratio 1.80/1.22, or in the ratio

W °'°7  On the assumption that deflection and equivalent static pressure are

nearly proportional to each other, therefore, the total variation of the

equivalent static pressure would be about as W °'8S+0.m W 4 , which is not

too different from the observed W°'5

In absolute magnitude, however, the equivalent static pressures are

considerably below the estimated peak pressures in thq explosion wave. For
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example, the wave from 1 pound of TNT at 7.5 feet, corresponding to that from
300 pounds at 50 feet, should have a peak pressure of about 2100 pounds per
square inch, but it prodilces only the same deflection as a static pressure of
1650 pounds. The occurrence of dynamical overshoot should make the wave
equivalent perhaps to 2100 x 1.22 = 2560 pounds. An increase of 55 per cent
in the yield stress of the copper diaphragm above the static value, due to
high strain rate, would remove the discrepancy, but such an increase seems

excessive.
Other features of the data cannot be interpreted with certainty.

21-INCH DIAPHRAGMS

Data pertaining to tests on 21-inch steel diaphragms have recently

been reported by Lt. Comdr. R.W. Goranson, USNR, for the Bureau of Ships (22).

The diaphragms were securely fastened to the equivalent of a heavy steel ring
I foot wide mounted on the front of a heavy caisson and were attacked by
charges of I pound of TNT. Perhaps the ring can be regarded as roughly
equivalent to an infinite baffle.

In Table 2 there are shown, for seven shots, the kind of bteel, the
thickness h, the distance R of the charge, the average dynamic yield stress a
as estimated in the original report, the observed final set deflections z,
and several computed values of z.

TABLE 2

21-Inch Steel Diaphragms of Special Treatment Steel, High Tensile Steel,
Medium Steel and Furniture Steel

Kind h R a sobs. Scale. Sfr,, ss caw. g, Vg
Steel inches feet lb/in2  inches inches inches inches inches feet per

Steelsecond

STS 0.125 4 125000 1.22 1.13 0 1.46 0.82 83
HTS 0.125 3 85000 2.04 2.00 0.77 2.52 0.67 111
MS 0.125 3 85000 2.00 2.00 0.77 2.52 0.67 111

S.30 3.69 1.50 4.52 0.49 136iS 0109 .5 4000 4.15
FS 0.063 4.5 45000 2.70 2.89 0.88 3.36 0.49 83
FS 0.032 10.0 45000 1.35 1.92 0.33 2.14 0.49 41
MS 0.125 1.75 65000 3.95 (avg) 4.01 1.74 14.97 0.59 190

A in the thickneas, 0 the assumed average dynamic yield stress, R is the distance to the cha-ge.

$*be. is the observed central set deflection, s. the calculated value at the elastic limit; for
otr vaiues of s and for w, see the text.
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A fair approximate estimate of the high-pressure part of the shock

wave at a distance of R feet from I pound of TNT, according to measurements

by Hilliar (14) or with piezoelectric gages (22) seems to be

15600 e-°8700 ib/in2
S=R

The time constant of the wave is thus about T, = 0.115 millisecond. This is

comparable with the diffraction time for the diaphragm or Td - 10.5/59 - 0.18

millisecond, but it is much less than the swing time, which is given by Equa-

tion [66] as 0.64 millisecond. The swing time will be longer if water load-

ing is included.

Thus, if cavitation does not oqcur, Case 1 as described on page 46
of the present repor'. is present. Deflections calculated on this assumption,

from Equation [77], are shown in Table 2 as z..,.. They are decidedly

larger* than the observed values. The discrepancy is probably great enough

to outweigh possible sources of error in the necessarily simplified mode of

calculation that is employed here. It may be concluded, therefore, that the

diaphragms were protected in some way, probably by the occurrence of cavi-

tation.

The pressure on the diaphragm should sink very quickly from its

initial peak value. The v&lue of z in Equation [5b] is 5.7/(8700 x 0.000733k)

or 0.89/h, where h is the thickness of the diaphragm in inches. Hence, for

h = 0.125 inch, z = 7.1, and the compliance time, at which the pressure has

become hydrostatic and the diaphragm is moving at maximum velocity, is, from

Equation [5a], T, = In 7.1/(8700 x 6.1) second = 0.037 millisecond. This is

a small fraction of the swing time. For thinner diaphragms T will be even

less. The pressure will then become negative, and cavitation is to be ex-

pected.

On the assumption that cavitation occurs at the surface of the dia-

phragm as soon as the preseure on it sinks below the hydrostatic value, the

maximum velocity of the diaphragm is v,, as given by Equation [71. Velocities

* calculated from this equation, with p, - 15600/R, pc - 5.7, x = 0.89/h, are

given as a matter of interest as v,, in Table 2. If no further energy is de-

livered to the diaphragm by the water, and if it takes on a nearly spherical

shape, its central net deflection z will be given approximately by Equations

[80a] and [81]. Values calculated from these equations, using a - 10.5

inches and the values of a given in the table, are shown in Table 2 as sf,,,.

They are much smaller than the observed values. Even smaller calculated

* In the original report (21) much smaller calculated values are given owing to the use nf a different

method of calculation. The method employed in this report is believed to be preferable.
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values of z, and also smaller values of v., are obtained if cavitation is

assumed to set in Rt a pressure below hydrostatic pressure.

Hence, as was pointed out in the original report (21), an addi-

tional source of energy must be found. The water will in fact, overtake the I
diaphragm and may do additional plastic work upon it. According to the ana-

lytical results, the water should acquire considerable velocity even if the

incident wave has entirely ceased; but, actually, at t - T.= 0.037 milli-

second, the incident pressure has decreased only to a fraction 0
-
80

° x 10-6

or 0.73 of its !nitial value. An attempt to allow for the additional plastic

work was made in Equation [841, and values of x calculated from this equation

and [80a] are shown in Table 2 as z,,,,.. These values are in good agreement

with the observed deflections.

The assumptions underlying Equation [84] are certainly wide of the

mark in certain details, but it may be that in their broad outlines these as-

sumptions reproduce roughly the process that actually occurred. If this is

so, about three-fourths of the plastic energy was delivered to the diaphragms

by the water as it impinged uponi them after closure of the cavitation.

The f.Anal result will presumably not be very different if cavita-

tion occurs first in the water, or if, beginning at the diaphragm, it then

spreads back into the water.
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MATHEMATICAL APPENDIX

WAVES INCIDENT UPON THE INFINITE PLANE FACE OF A TARGET
The only case of wave reflection that can be handled easily is the

incidence of waves upon a plane reflecting surface of infinite lateral extent.

The waves may be of any type and incident at any angle, but it must be assumed
that they are weak enough to make the linear theory of wave propagation appli-

cable. Furthermore, if movement of the surface occurs, its displacement must

be small. The surface will be called a target, but it may be wholly or in

part merely the free surface of the water. The case thus characterized will

be under discussion except as otherwise stated.

- Under these conditions, an expression for the pressure field in the
fluid in front of the target can be built up by the method of superposition.

Let pi denote the pressure that is added tc the hydrostatic pressure po at
any point in the fluid by the incident wave or waves; that is, po + p, is the

pressure that would exist there if the target were replaced by fluid. Let a

set of reflected waves be added such as would occur if the target were rigid.

These waves are simply the mirror image of the incident waves in the face of
the target; together with the incident waves, they give a pressure field in

which, at'any point on the target, the excess of pressure is 2 p,, while the

component of the particle velocity perpendicular to the face is zero.

The target and the fluid must, however, have the same normal compo-

nent of velocity. This may be secured by adding further waves such as would

be emitted by a suitable distribution of point sources located on the face of
the target. In the waves emitted by a point source, the pressure p and the

particle velocity v at a distance a from the element may be written

where t Is the time, p is the density of the fluid, c is the speed of sound

in it, and where f(t - s/c) stands for some function of the variable t - S/C,

and f' for the derivative of this function. The fluid emitted by

the source will be that which crosses a small hemisphere drawn

about the source as a center; see Figure 29. The volume V, emit-

ted per second will be, therefore, 2,s 2v . Or, since the first

term in Equation [98] becomes negligible in comparison with the

second as s 8 0,
S

V, - .im[2 r 2 1 f

If there are N sources per unit area, the volume emit-

ted per second from an element 6S of the surface will be NV 16S. Figure 29
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In the resultant motion of the fluid as a whole, this volume is carried out-
ward from the surface by the normal component of the resultant particle ve-

locity v,. Hence

2,rNv. dS m NV1OS -f )p

The velocity v,, however, must be the same as the normal component of veloc-
ity of the target. Hence, if z is a coordinate of position for the element

6S, measured perpendicularly to the initial plane and, for convenience, in
the direction away from the fluid,

dz
dt

The proper particle velocity will exist, therefore, at the target if f(t) is

such a function that

27rNf t
P

Then
f '(0) - f t -- - ----

21rN

where i = dt z/dt 2 ; and

.f'( - 2 - 2rN 'C

where ' ,_L denotes the value that the acceleration i has, not at time t, but

at the earlier time t - s/c.
The pressure at a distance s from the element 4S, due to all sources

on it, is, therefore, by [98]
(N6S)p 1 - N S f,(t ) - - -i

8 C 27r z,

and at any point on the face of the target the pressure due to all sources is

21r s[99]

where a denotes distance from the point to the element dS. Here p, refers to
a particular point on the target and to time t, z,_i is the value of s at dSC

but at a time t - s/C, and the integration extends over the face of the
target.

The pressure at any point on the target due to all causes is then

p - 2p, + p + po - 2p, + Po - - - i,_. dS J[100]

Here even po may vary from one point of the target to another.



67 CONFIDENTIAL

THE MOTION OF A PLATE, DIAPHRAGM OR LIQUID SURFACE

Suppose that, in the case just considered, the target consists of a

plate or diaphragm, initially plane. Then its equation of motion will be

mzp+ -po [101]

where m Is its mass per unit area, and 0 stands for the difference between

the hydrostatic pressure p0 on the front face and the pressure p; on the back

face, plus the net force per unit area due to stresses, if any. Or, by [100],

mi - 2p, + f - -f '- dS [102]

The displacement is assumed here to remain small enough so that its component
parallel to the initial plane can be ignored. Equation [102] is an integro-

differential equation for z, which is a function both of time and of position

on the plate.

The "target" may actually consist wholly or in part of the free
"4 surface of the liquid, for nothing in the calculation of the pressure rests

upon the assumption of a solid target. At any point where the surface is

free, or, for that matter, at any other point as well, z will represent the

normal displacement of the liquid surface.%
At a point on the free surface, [100] may conveniently be written

21r s* fJ~~z~idSin2,+pr~~~[103]

where p it the external pressure on the surface. The integral extends as

usual over the entire plane. This equation, when needed, can be formed from

[102] by setting m= 0 and p op0 - p. Here po includes atmospheric pressure

*, and may differ from p because of an accelerational pressure gradient in the

.* liquid. At any point where the surface of the liquid is in contact with a

plate or diaphragm, [102] will continue to hold.

THE CASE OF PLANE WAVES

If the plate remains accurately plane, and if pi is uniform over it,

then i is also uniform and hence Is a function of t only. Thus in the inte-

gral in [102] the quantity i ,-. is a function of t and s only. Hence in

this integral dS may be replaced by 21rsds, representing a ring-shaped element

of area on the plane, and

i, dS -211 izg i, d

Now a dot over z _ is equivalent to differentiation with respect to the

argument t - s/c, so that
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, d . d.

d(t - e) - C~g. 14
_-)

where i ,_± is the velocity at time t - B/c.
Hence, if the integration is restricted to a ring-shaped area be--

tweeni s -s and s = 82,

- -S-21rcf t- ds*- -21rei,_1

8 w~~-' -( 15

-, dss 2nc k(t) (106)

Thus [102] becomes

m, + pc, - 2p +, [107]

where all quantities refer to time t. This is an obvious generalization of

the one-dimensional equation; see Equations [10) and ill) on pages 24 and 26
of TMB Report 480 (10).

Equation [107] has reference to plane waves at

normal incidence. It was pointed out by Taylor (4) that

o' the case of plane waves incide t at any angle 9 can eas-

ty ily be treated provided it is assumed that $ - 0, so that

the elements of the diaphragm move independently.

Let V denote distance measured along the dia-
0 phragm in the plane of incidence. In Figure 30 there Is

shown an incident wave QQ'Q", at all points of which the
incident pressure has the same value. If Q strikes the
origin for y at time t, Q' will not strike the diaphragm

Figure 30 until a time Y sin 0 later, where c is the speed of soundc

In the liquid. Thus if p,(t) denotes the incident pres-
sure at 1 - 0, its value elsewhere on the diaphragm is pi (t - y jin 0

It is a natural surmise now, to be verified in the sequel, that the
displacement x will also be a function of the same argument or x t - y sin )

CThen all elements execute the same motion but in different phase; and

*/ A . fi(t-8+Ysn)d
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Introducing polars s, t on the diaphragm so that y = a cosip and

dS= adsdO, changing from s to s' = s + s cost& sin 0, so that ds' =

(1 + sin Ocosb)ds. and proceeding as in obtaining [105],

d- 8 1 + sin 0 cos kb os

provided z(- oo) = 0. Hence [102] becomes, as a generalization of [1071,

m + PC - 2p, + [108]

This equation is also obtained easily from a simple consideration of the pro-

cess of reflection.

EFFECT OF AN INFINITE BAFFLE

Let part of the target consist of a plane baffle extending later-

ally to an infinite distance from the edge of the plate.

If the baffle is fixed in position, its only effect upon [102] is

that the range of integration for the integral need be extended only over the

face of the plate, since elsewhere i = 0.

If the baffle is movable, let z, denote its displacement. Then

over the baffle zb is uniform and is a function only of the time t or zb(t).

Let the integral in [102] be divided as follows:f ds - f +i f(t,-
f-S + fdSibt d

plate

in which the first integral on the right is arbitrarily extended over the

plate as well as over the bafflA, And the error thus introduced is compen-

sated for by the second term in the second integral, which extends only over

the plate. The first integral on the right can then be transformed as in

[105], since i,(t - s/c) is a function only of t - 8/c, giving

f 'i,( - dS- 2lre i,(t)

in terms of the velocity ia of the baffle at time t. Hence [102) may be

[I written

mi - 272, + 0 - pCZ&b f- 1 [' - i dS [109]
plateC

where all quantities except i - i. in the integrand are taken at time t.

Another form for a special case is given in Equation [19] or [20].

I
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PLATE OR DIAPHRAGM PROPORTIONALLY CONSTRAINED AND MOUNTED
IN AN INFINITE PLANE BAFFLE

Let it be assumed that in the displacement of the plate from its

initial plane position all elements move in fixed proportion, so that it is

possible to write

z - z'(t)f(z,y) [110]

where z, is a function of the time whereas f(z,y) is a fixed function of po-

sition on the initial plane; z, may represent the displacement of some point

on the plate, such as the center, at which then f(z,y) - I. Let the baffle

be immovable.

Then [102] becomes, with aS replaced by dx'dy',

mi,(t) f(x,y) - 2p, + f - ff- ( - W, y') dx' dy'

Here z,, in contrast with z in [102], is a function of time alone, and

*,(t - s/c) denotes the value of d 2 z,/dt 2 at a time t - s/c. By multiplying

through by f(z,y) and integrating again over the whole area of the plate, a

convenient ordinary integrodifferential equation is obtained for z,:

M = 2F, + * - -L-fff(x,y) dxdy ff! "(t - 1)f(zy') dx'dy' [111]

where

M ffn[f(x,y)]'dxdy [112]

F, =ffp, f(x,y)dxdy, 0 ==ff0 f(x,y) dxdy [113a, b]

Since, from [110],

- (,y) [114

the kinetic energy of the plate la

K= JJ- mi 2 dxdy = -1 icff m[f(x,Y)] 2 dxdy M k 2  [1151

A more useful form for the integral in [111 ] is obtained If x'y' are

replaced by polars s, 0, with origin at the movable point z,y, but with the

axis in a fixed direction, so that dx'dy' Is replaced by sdOds. Here s and a

may be defined by the equations

z' - = qcosO, y'-y - ssin0

see Figure 31. Then, after changing the order of integration, [111] can be

written
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Mz- 2F, + 0 - p/fi.(t - f-) j(s)ds [116]

where D is the maximum diameter of the plate and

7(8)- [- fff(z, y') f(z,,y) dX dy 1117]

in which f(z',Vl is to be understood as expressed in terms of x, y, , . If

s is too large, the integral in x and y will vanish for certain values of 9;

and the entire integral vanishes for

a>D.

MoLion of' the elements par- (X '
allel to the initial plane of the dxuy'

plate is ignored here, as usual. An D

equation containing corrections for

motion of the baffle is obtained on

page 28 of the text as Equation [33].
S

The proportional shape may

be supposed to be maintained by suit-

able internal constraint forces which (XY)

on the whole do no work in any dis- d-dy
dxdy

placement of the plate. These forces

are in addition to those due to
stresses; they might be supplied, Figure 31

for example, by a suitable linkwork

mounted on the diaphragm.

If O'denotes the net force on unit area due to the constraints, the

element of work done by them is dW'- J('dz)dS = 0, or, if x = Zb + zef(xy)
as in [32], to allow for motion of the baffle,

dW' - dzbf O'dS + dz fo'f(xy)dS M0

But 'dSis the total force due to the constraints and must vanish. Hence

f'f(x,y)dS = 0. The vanishing of this integral prevents #' from contributirg

to 0.
As a special case, if a circular diaphragm of radius a is assumed

to remain symmetric about its axis but to become paraboloidal in form, and

if z, is taken to represent the displacement of the center, then
r2

f(a,Y) 1 (118]

where r denotes distrnce from the center, and it is found that, whereas 7(s)

0 for s ?2a, for 0& < 2a
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1(s) a'[(.2 -3R2)os1 + ( + !3- .jLR3)YT4_R]T [jig]2 2 3 2

where R - s/a. Furthermore, from [112], if m is uniform over the plate,

M - -"- ma 2  [120]3

and, if the incident pressure p, is also uniform, from (113a],

F. -u fa2 pi [121]

Or, if the diaphragm moves like a piston, except for a negligible

ring at the edge, f(s,l) a 1 and

(s)- a2(2co-' R R --RT) 1122]
221

M - irma 2, F -ff G2pi [123a, b]

The curves for n(s) corresponding to these two formulas do not vary

much from straight lines of the form

r (s) - 7a2(A, - B.) [124)

If the constants A' and B' are determined so as to give correct values to the

two integrals

then, for paraboloidal constraint, A' - 0.357, B' 0 0.246; for the piston-

like constraint, A' = 0.961, B' = 0.544. The curves for i/ra and the ccr-

responding lines are shown in Figure 32.

If an expression for n of the form of [124] is substituted in [116],

the Integral can be evaluated. For the upper limit, however, 2a must be re-

placed by # - A'a/B', at which 17 as given by [124] vanishes. A dot over

z,(t - 8/) is equivalent to differentiation with respect to the argument

(t - 8/c), hence, at fixed t, in analogy with [104],

Hence, integrating by parts,

-I,,. ¢

(A B'-.)'(t - )ds - [-c(A'- B'±)i(t -~) + LB,(t- j
2 =0

-cAki,(t) + -B'[z(
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I.0
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Figure 32 - Plot to Represent the Function i/

For a piston q is defined in Equation (122]; for a paraboloidal diaphragm, in Equation [119].
The radius of the diaphragm is a, and the distance from its 4:enter is R. The curves represent
q/eel; the straight lines represent linear approximations having the same area under them as
the curves and also the same moment about the axis, R = 0.

If this expression multiplied by tr& 2 is substituted for the integral in [116],

and also

fpca2A' ,rpc2eB A's
k M b, - T

M ' B'c

Equation [116] becomes the difference-dilfferential equation

i,()+ k )- bz(0- , (t - T,)] . 2F, + ,0 (1251
M

This equation is more easily handled than the more accurate integrodifferen-

tial equation; in simple cases it can be solved completely.

THE NON-COMPRESSIVE CASE WITH PROPORTIONAL CONSTRAINT
Let i, change so slowly with time that it changes only by a negli-

gible amount during a time D/c. Then in Equation [111] or [116] i, can be

treated as independent of s and can be taken out from under the integral sign,

with the result that

(M + M) i,[ - 2F + [126]

i,, wi P do th-)e d istanc b eW y') dt'dhe - pd ()ad [127]
21r SJ 8/

in which s denotes the distance between the elements dzdy and dx'dy°.
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For a circular diaphragm of radius a, substitution of [119] or
[122] for ) In [127] and evaluation of the integral gives, for the paraboloi-
dal and the piston-like motions, respectively, I

M, - 0.813 pae, M.,,pa [128a, b]

A third type of motion that in of some interest is described by

z - X'(t)I(z,.) - ,0(t)(1 - ,2 for r < a (129]

The Integral in [102] becomes in this case, when i varies slowly enough with

the time,

f-L_,dS -ifA~T d (130]

Now this last integral represents the electrical potential at any
point of a disk due to a density of charge on it equal to (1 - rt/alT; and
it is a known theorem in electrostatics that a surface density varying In
this manner produces a constant potential over the disk. The constant value

of the Integral Is easily found by evaluating it for a point at the center,
where r , - and dS may be replaced by 2wrdn, oo thet

fl - I() -s-'a )i 2r dr -ra [131]

With the use of this result, the integral for M, in [127] is easily
evaluated, thus:

M, = P tid 1r ,,,

aj a2 rdr - w pa [132)

Furthermore, substitution from (130] and [131] for the integral in
[103 ] gives

-r-paiz - 2p, + p. - p [133]

This result will hold for the water surface exposed in a circular opening of
radius a in a plate lying against the water, when, with the exposed surface
initially plane and stationary, a comparatively steady pressure equal to
2p, + p, Is generated in the water back of the hole while the pressure on the
exposed surface is p. Then [129] represents the displacement of the water
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surface provided z, is such a function of the time that i, has the value

given by [133].

The electrostatic analogy can be utilized in all cases to show that

.M1C12/2 represents the kinetic energy in the water. This may also be shown

from [126] as follows. Let the mass of the diaphragm be negligible, so that

M can be set equal to 0 and stress forces can be neglected in 0, and let F, u

0. Then Equation [126], multiplied through by i,, can be written, using

[113b],

=ii ff 0 ,f(x, y) dx d

Here 0 is now the difference between hydrostatic pressure and the pressure on
the back face of the plate, and ifj(z,y) is the velocity; hence the integral

represents the rate at which the net pressure is doing work. This must equal

the rate at which the kinetic energy of the water is increasing; and the left-

hand member of the equation is in fact equal to

dGm , i 2)

Up to this point it has been assumed that the diaphragm Is sur-

rounded by a fixed plane baffle of infinite extent. If there Is no baffle,

and the diaphragm forms one side of an air-filled box, the determination of

M, is much more difficult. In order to estimate the order of magnitude of

the difference, the value of M, was calculated for a sphere whose sueface

over one hemisphere moves radially outward while the other hemisphere re-

mains at rest. The motion of potential flow is easily written out for this

case in terms of spherical harmonics; summation of the resulting series gives

M, = 0.8 321rpa3 where a is the radius of the sphere and p the density of the
surrounding fluid. Had the fluid been confined by a plane baffle continuing

the plane of the base of the expanding hemisphere, M, would have been 2wps.

Thus removal of the baffle decreases M, in the ratio 0.416. It is a plaus-

ible surmise that the decrease in M, would be somewhat less for a paraboloi-

dal diaphragm and somewhat more for a piston.

THE REDUCTION PRINCIPLE, IN THE CASE OF PROPORTIONAL CONSTRAINT

Suppose again that only part of the target is movable, the rest

constituting an infinite rigid baffle; as before, let the maximum diameter of

the movable plate be D. Let Mand M be constants. Then the following'state-

ments are true:

1. Within any time Interval of length D/e, at least once

=W M + MI
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where a subscript f means that values are to be taken at the end of the in-

terval, while d2*,/dlt is the acceleration at some unknown instant during the

interval. Alternatively, d 2 ze/dt' may merely change discontinuously from a

value on one side of that stated to a value on the other side. I

2. Within any time interval of length Dc, at least at one instant t

() (tl) + M+M, { i(t - - k(t 1)] 7 (s)d +2F, + )d} [1351
(I

or

i(t) = i,(tl) + M + M, f(2Fl + O)dt [136]
$I

where tf is the time at the end of the interval and t1 is any chosen time not

later than its beginning, while t I' is some unknown Instant lying between

ti -D/e and t,. Thus

t- < t.< ti < t < t

and 9f and tj are arbitrary except that

t ,t > D
I -I= i

To prove the first of these statements, multiply [116] through by

M1 (M+ Ma':
D

(A' + M1)M1Mi() - M,(M + Md[2Fj + - jo t- .-) 7(s)d# [137]

Now, if Q is any quantity independent of s, by [127]

M,Q - Pf Q j7()ds [138]

By applying this transformation to i,(t), F and 0, it is easily seen that

[137] can be written

P{[M + M)i,(t - 2F -0] + MJM+ M)t- X)- 2F - .] i(s)ds - 0

Now if the second expression in brackets does not vanish for any value of 8

in the range of integration, and nowhere Jumps from positive to negative or

vice versa, then it has everywhere the same sign, and the same sign as the

first bracket, which is its own value for s 0 0; the entire integrand has,
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therefore, the same sign throughout, and the integral cannot vanish. Hence

for at least one value a' between 0 and D the second bracket must either van-

ish or change sign discontinuously. At the corresponding time, t - s/c, ,
or i(t - s'/c) has the value stated in [13 ].

To prove [135], Equation [1161 is first integrated with respect to

the time from t, to tf:

D

mke(tf - im 2f'j' + O) dt - pi(,- - -t -) ri(s)ds

Multiplying by M,(M+ M,) and applying [138] to all terms except

D

pi iC(tf - )s) ds

there results

D 9f D

,+ - Mz,(t ) - f_(2F + O)dt - p jz(ti - -!-'d,'
0 -

ti

tIl

+ M [(M + M') i(t 1- - -MZ(t 1) - (2F +* 0)d t

- ( - L)P7(&')da'] 7(s) da - 0

and by reasoning as before and then using [127], Equation (135] is obtained.

To convert thAi equation into [136], note that, since n is positive and x,(t)

is cortinuous, there exists a value a" between 0 and D such that
D D

f[i,(, - -- ,,] 7(.)ds - ,- 1",- ,()] pjf7()d

- C- )- k,,]

by [127]. The terms containing tj in [135] can thus be written

M + M1'(t

This expression lies between i,(t) and i,(t, -sac); it is, therefore, the

value of i(t, - S/c) at some other value s' between 0 and s", or the value

osba
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Comparison with [126] and with the result of integrating this equa-

tion from t, to t1 , respectively, shows that the values of i, and i, given by

[134] and [1351 or [136] are equal to the values obtained from non-compressive

theory except for the initial correction due to the first integral in [135]

or the substitution of ti' for t, in [136].

INITIAL MOTION OF A PROPORTIONALLY CONSTRAINED PLATE
After a proportionally constrained plate has been either at rest or

moving uniformly for a time greater than D/c, let a wave of pressure p, sud-

denly begin to fall upon it, at time t - 0. Then, in [111], ie(t - s/c) will

at first differ from zero only for small s, for which f(z', y') may be replaced
by f(x,y) and taken out from under the integral sign. The integration with

respect to dx'dy' or dS' can then be varied out in analogy with [106]:

Ji.(t - " -) d w - c (t) [139]

provided z=(- oo) = 0. Thus [111], becomes, approximately, for a short time,

Mi + pcAi, - 2F +4 [140]

where

A- ff[f (,Y)] dzdy [141]

EFFECT OF FLUID ON BOTH SIDES OF THE PLATE
If there is fluid of appreciable density behind the plate as well

as in front of it, a release pressure will be developed on both sides. That.
in front will be, from [99],

PL- f - dS

where p, is the density of the fluid in front and c, is the speed of sound in
this fluid. The release pressure behind the plate will be similarly,

P12  - LdS [142]

where p. and c. refer to the fluid behind the plate. The reversal of sign

here arises from the fact that in obtaining the formula for the release pres-

sure Y was assumed to be measured positively away from the fluid, whereas
here the positive direction for i is taken always toward the back side of the

plate. The total pressure on the back face is then

P2 = P02 + P.2
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where Po2 is the hydrostatic pressure on that face.

The second release pressure P.. is automatically allowed for in the

quantities 0 and 0 as originally defined. Hence, if desired, all of the pre-

ceding formulas, Equations (100] to [141], will still hold provided p and c
in those formulas are replaced by p, and cl.

As an alternative, 0 may be defined as

'0 - 0 . '0-PfL', [143]

where 00 denotes the difference between hydrostatic pressure on the front and

on the back, plus the net force on the plate per unit area due to stresses.

Then by [113b] and the transformation leading to [116]

0=-0 - -ft ff Z' Ydx dyff -L-i,(t -Lfz'y) .d'

where

00 .f 0 f(z, y)dS [145]

If this is done, it is readily seen that, besides the substitution

of 00 for 0 in all equations, every term containing an integral with i -f or

i(t - s/c) in the integrand is replaced by the sum of two similar terms with

p and c changed to p, and c1 or to P2 and c2, respectively; furthermore, in

such equations for M, as [127], [128a, b] and [132], p is replaced by p, + pt,

and where the acoustic impedance pe occurs, as in [107], [108], [109], and

[140], it is replaced by the sum of the two impedances, pOc1 + p 2 c2 .
In particular, for a uniform plane plate between two fluids, with

plane waves incident normally upon it on one side, [107] becomes

mz+(P 1 cl +p 2 C2 ) -2p i+ 0  [146]

CAVITATION AT A PLATE OR DIAPHRAGM

The analytical theory of cavitation at the interface between a

plate and a liquid will be developed here on the two assumptions that cavita-

tion occurs whenever the pressure sinks to a fixed breaking-pressure p,, and

that the pressure in the cavitated region has a definite value p., not less

than Pb' The assumptions hitherto made concerning the plate will be retained.

On these assumptions, cavitation will begin in an area on the plate

in which the pressure is decreasing and at a point at which a local minimum
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of pressure occurs. Since in the neighborhood of such a point the pressure

differs only by a quantity of the second order, cavitation will then at once

occur at neighboring points as well. Thus the edge of the cavitated region,

advancing over the plate as a breaking-edge, will move at first at infinite I
speed. Eventually it will halt and return toward the cavitated area as a

closing-edge, leaving the liquid behind It in contact with the plate.

Let U denote the speed of propagation of the edge in a direction

perpendicular to itself, and let c denote the speed of sound in the liquid.

If U Z c, the phenomena at the edge are essentially local in char-

acter and the analytical treatment is easy. For effects can be propagated

through the liquid only at speed c; hence no effects propagated from points

behind the edge can overtake it, so that its behavior is determined entirely

by conditions ahead of it, and these conditions, in turn, are entirely unin-

fluenced by the approach of the edge.

Consider, first, a breaking-edge. Let dn denote the perpendicular

distance from the edge to a point P ahead of it.

Then the pressure, which is Pb at the edge, is
Pb + ap--in

On

at P, where Op/On denotes the gradient of the pressure P In a direction per-

pendicular to the edge. The pressure at P will sink to P., and the edge will,

therefore, move up to P, in a time

OP

d t w O n Odt-
Ot

where Op/Ot is the time derivative of the pressure in the liquid Just ahead

of the edge. Hence

.d _Q [147]
dt O

On

Thus U . c only if -Op/Ot 2 c8p/Oln.
As the edge passes P, the pressure on the liquid surface, previous-

ly Pb, becomes p,. If p, > Pb, the sudden increase in the value of p in [103]
requires a compensating negative increment of the integral in that equation.

This increment can arise only from high momentary accelerations of the liquid
surface. Hence, as the edge passes P, there occurs an impulsive change in

the velocity of the liquid surface perpendicular to the plate. This change

is easily calculated.
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The high values of the acceleration associated with the passage of
the edge travel along with it. Hence, if x is the coordinate of any point on

the plate measured from P perpendicularly to the edge and in its direction of

motion, and if il(t) is the special, high acceleration due to the edge at P

at a certain time t, the simultaneous value of this acceleration at any other

point will be the same as the value that was at P at the earlier time t - x/U,
or i,(t - x/U). Thus the total contribution of the edge to the integral in

[103] can be written

Lf,,_ 1 . ,(t X) Is

Just after the edge has passed P, the integrand in the last integral is eas-

ily seen to differ from zero only for elements dS lying near a small ellipse
surrounding P.

Let polars r, 0 be introduced such that s = r, z = r cos 0. Then
dS = 27rrdrdG and the last equation becomes

SU )dr

Z. 6 dO j 1 + r cost- ce

"- c4 A, 2irc( "r "s8

S U

where Ai is the Jump in the velocity i at the edge taken in the direction of

decreasing r.

Thus, according to (103],

[21rc(Ai)(l - c -1]- -(pa- Pb) [148]

i Ai- PC --- (I - C){ [149]

Or, since according to [101] the pressure Just before the edge arrived was

connected with conditions in the plate by the equation

P" Pb mz - + p0

PC -- 2 ( +[ o150]



CONFIDENTIAL 82

For a closing-edge, the same calculation applies except that here

Ai is fixed by conditions in the cavitated region ahead of the advancing edge,

and the impulsive change Ap in the pressure at the surface of the liquid is

to be found. As closing occurs, the velocity of the liquid surface suddenly

changes from some value it to the velocity ip of the plate. The liquid sur-

face behaves like a plate of zero mass, hence it alone changes velocity in

the impact. Hence, from the first part of [i18],

C2 -[

k1 exceeds z - PC(i - 2 _

If it exceeds i. ahead of the edge, the liquid surface will usually

meet the plate at a finite angle 0. Then in time dt the edge will advance a

distance Udt over the plate of such magnitude that Udt tan 19 - - ip)dt.

Hence for a closing-edge of the type under consideration

U = [(152]

tan 6

and an edge can advance as a closing-edge moving at speed UZ c only If

it - ip c tan 6. Exceptionally, it might happen momentarily that 6 - 0

and i, = zp.
If conditions are not such as to cause the edge of the cavitated

area to travel at a speed equal to or greater than c, it seems clear that the

edge will usually stand still, except as it may be carried -long by flow of

the liquid parallel to the plate. For,propagation of pressure waves from or
to the free surface of the liquid should prevent the occurrence of large dif-

ferences of pressure in the liquid near the edge. Hence, if p6 < p,, pres-

sures so low as Pb cannot occur at the edge, and further cavitation cannot

occur. Impulsive changes of velocity are likewise impossible; if such im-

pulsive action begins, but the edge moves at a speed less than c, the im-

pulsive pressure developed will produce such a redistribution of velocities

in the liquid as to equalize it and i on the cavitated side of the edge. As

an exceptional case, the liquid surface might perhaps roll onto the plate

like a rug being laid down on a floor.

Otherwise, under the assumed conditions, the cage will move only as

it is carried along by the liquid in its particle motion. In a'strict linear

theory, therefore, in which all particle velocities are assumed to be negli-

gibly small, the edge of the cavitated area must stand still except when it

can move at least at the speed of sound.

CAVITATION WITH DOUBLE PROPORTIONAL CONSTRAINT

Something more can be inferred, including useful relations with

non-compressive theory, if the surface of the liquid is arbitrarily assumed
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to move under the eame type of proportional constraint as the plate. Let

the plate be mounted in a fixed plane baffle. Then the reduction principle

stated on page 75 can be utilized by the following trick.

While the liquid is in contact with the plate, [116] holds; this

equation can be written

0 - 2F, + 0 - Mg - -(t -- ~s)r d8 -. [153i

When free, the surface is equivalent to a plate containing neither mass nor
stress forces; its equation can be formed from [153] by putting M = 0 and
* = 0. where

, -"f (po -p,)f(xy)dxdy [154]

and represents the effect of the difference between the hydrostatic pressure

po and the pressure p, on the surface. The equation for the surface when

free is thus

2F + 08- (s -)(ads [1551

Finally, to avoid discontinuous change, the pressure on the surface may be
supposed to change rapidly but continuously from the pressure exerted on it
by the plate Just before cavitation to the value p,. During this transition

process the equation for motion of the surface of the liquid may be written

o - 2F, + *'- p 'ic(t - f)i(a)d, [1561

where 0' changes rapidly from 0- Mi, to 0.; here i, stands for the accelera-

tion Just before the transition begins.

During the transition, high accelerations may occur, with the re-

sult that the velocity iel of the liquid surface changes by Ait where, in
analogy with [150] when U = ,

A pc (Mz - 0 + ) 157]

,'ne reduction principle on page 75, which was based on [116], can

now be applied by noting that [153], [156], and [155J can be-regarded as suc-

Pessive forms of [116] in which the constant M is first replaced by 0, and

2F, + * is then replaced by an appropriate expression. In [136], let t, be

taken as the instant at which the transition to cavitation begins. Then, in

the integral in [136), during thp transition 2F + 0 is replaced by 2Fj + *',



%ovi'r IUtM I AL 84

as In [156], but the resulting contricution to the integral is negligible be-
cause oi' the extreme shortness of the time interval. Hence, the integral may

be written simply as

f2F, + .)It
ge

from (155], where t,, is the time at which cavitation occurs.

Hence, putting M- 0 in [136], it may be concluded that, after the

onset of cavitation, within any time interval of length D/c the velocity of
the surface of the liquid will take on at least once the value

" + 2F + )dt [158]

Here tf is the time at the end of the chosen interval and i,(t, ) is the com-
mon velocity of liquid surface and plate at some instant that precedes the
onset of cavitation by an interval less than Dc. A specific expression for
i,(t , ) can be obtained by using [135) instead of [136). From this expres-

sion it is easily seen that, if cavitation follows the Incidence of a pres-
sure wave within an interval much less than D/c, then i,(t ,) is approximately
equal to the velocity of the plate Just prior to the incidence of the wave.

It will be noted that the value of i., given by [158] represents
the value of i , at time t as calculated from non-compressive theory, ex-
cept for the substitution of i,(t;,) for k (tc,) as the initial velocity.

For the non-compressive value can be obtained by integrating the analog of
(126] for a free surface or

M, zi, - 2Fj + 0( (159]

In [158] the initial Impulsive change of velocity has disappeared.
During the reverse process that occurs when the cavitation closes,

the velocity of the liquid surface changes impulsively from some value i,, to

the velocity i,, which the plate happens.to have at that instant. Thereafter
(153] holds again; but in this equation some of those values of i,(t - #/c)

that have reference.to times before the closure of the cavitation are now
values of the acceleration of the free liquid surface.

During a time after the closure that is short relatively to the

ulffraction time, (153] can be written approximately as

my, M 21', + 0 + ocAUz~1 - i,) - p (10t'l
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where s, is such a value of s that t -sl/c represents the time at which clos-

ure occurred and A is given by [141]. Here zi, is a constant, and the part

of the integral for 0 < a < s, has been transformed into the term containing

A in the same way in which the similar term in [140] was obtained.

The reduction principle can again be invoked in order to obtain an
expression for the final value of ia, the common velocity of liquid and plate.

If, in [136], ti is taken at the beginning of the transition process, the

transition itself again contributes nothing appreciable to the integral in

[136], which becomes here, from [153] used as a form of [116],

wher+ 0 - Mi)dt - M I i. 11) - i,(t,)] + + *)dt
t 1 1 1 1

where t,, is the instant Just after the completion of the transition. In the

last integral tn1 becomes replaced, as the time of transition is shortened to

zero, by the time ti or t,, at which the cavitation disappears; but i,(t11 )

becomes i,,(t, ) or the velocity of the plate, not that of the liquid or
lc (c ).

Hence it follows from [136], with the M in that equation replaced

by 0, that, after the closure of cavitation at time tc,, at some instant with-

in any interval of length Dic the common velocity of liquid surface and plate

takes on momentarily the value

Mi i'(t£1) + MiltI) + (2F + 0) [161]
i. + M , P cie

where zt,( ti,) is the velocity of the plate at the instant t,,, whereas
ktt (tt) is the velocity of the liquid surface at an instant 9;, that pre-

cedes t, by less than Dic and usually by less than the diffraction time, T'

Here jn [136] t, has been replaced by to, and i,(t;) by *,#(t*e). Actually,

the value of i, that is obtained from [136] in the manner described is some-

what different; if it is denoted by s,, its relation to i,. as defined by

[161], can be written in the form

i + M+M

~ M + M1 [it - ie]

hence, sinceM/(M+ Mj) < 1, i, lies between ik and is(tf), and, since the

velocity eventually traverses the entire range from is to , (t.), the value

occurs also. The explicit expression for zea(ta), obtained by using [135]

instead of [1361, is

rtQ
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The value of i, given by (161] represents the velocity as calcu-

lated for the time t1 from non-compressive theory, except that in the equali-

zation of velocities by impact as represented by the first two terms on the

right the velocity of the liquid surface Is taken, not at the time of impact

t,. but at a somewhat earlier time t.

So far nothing has been caid as to fluid back of the plate. If the

plate, or plate and baffle, lie between fluids in which the density and speed

of sound are, respectively, p,, c1 , and P2 ' c2, then ail of the results in
this section will hold good provided p and c are replaced by p., and c,, with

the understanding that 0 or 0 includes an allowance for the release pressure

in the second fluid. More explicit formulas can be obtained by substituting

for 0 or 0 (but not 0,) from [143] or [144].

SOME SWING TIMES

Suppose that a plate, mounted in a fixed plane baffle and con-
strained to move proportionally, is free from incident pressure, and that the

motion is slow enough so that the water or whatever liquid is in contact with

its faces can be treated as incompressible. Furthermore, let the motion be

small enough so that its component parallel to the plane of the diaphragm can
be ignored. Then [126] becomes

(M + mi,) - 0 [163]

This can be integrated after multiplication by iedt:

(M+M)zi zi ct - *zi dt - Odz,

whence

-(M + MIIi,2 - f dt, 1164]

From a Inowledge of i. as a function of z, the swing time can be found as

T. - fdt -f'if( "()'dz - iJ'dz,, [1651

taken between the limits s, - 0 and the first value of x, at which i, - 0.

The most important case is that of a circular diaphragm of radius a

and uniform thickness h, constrained to move in symmetrical parabololdal form

or according to [118]. For the small motions considered here, the difference

between a paraboloid and a sphere can also be ignored; the diaphragm can be
assumed, therefcre, to behave as a spherical membrane under uniform tension.

Elementary theory then gives, as in the deduction of [93], for the contribu-
tion of the stresses to 0,
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,, - 2,rahs, [166]

If the hydrostatic pressures on the two sides of the diaphragm are equal,

0 - 0, in [164].
If the diaphragm, flat initially, remains within the elastic range,

it is readily shown that

E z s

1 -u 2a*2 [1671

approximately, where E is'Young's modulus and u is Poisson's ratio; see TMB

Report 490, Equations [11], [17]. In this case, after evaluation of the in-

tegral with * - 0, as given in [166], Equation [164] gives

-2'Eh (.- z) [168]
M+MI 2(1-u)az

where z,, is the value of z, at which z 0. The swing time then involves

the Integral

f";"*f d 1 d x 1.311 [1691

The values of M and M, may also be inserted from [120] and [128a), In which

,m M ph and p - p, in terms of the density p. of the diaphragm and the den-

sity p, of the adjacent liquid, or

M . Mdha, M - 0.813p 1  [170a, b]

With these values. [165] and [168] give for the elastic swing time

T, 1.07a2 11-,[U

Thus in the elastic range the swing time varies with the amplitude z,,. If

the initial velocity i*, is known, the amplitude z,, can be found by setting

-ze i. and z, - 0 in [1681 and solving for z,,.
As an alternative, if the diaphragm stretches plastically under a

constant yield stress a and if the initial elastic range of the motion can be

neglected, from [164] and [166]

i,2. 21ra (z,_ ,z) 11721
ad + i g tM

and the integral that Is needed is

o ds=- " d'-x 7
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Then

T. - 77 [173]
aV- VI(Pd 1O.?173p1

Inclusion of both the elastic and the plastic ranges leads to very
complicated formulas. The error is not large, however, if the plastic formu-
la [173) is used for all motions that extend into the plastic range. The er-
ror Is greatest when the maximum displacement z, just attains the elastic
limit s,,, which is found by substituting s, for z, in 1167) and interpret-
ing a as the yield stress:

- 2 a [1714]zea -- a , _TE-- Fe 14

When z,, M z,,, the correct elastic formula, [171), gives

T. - 0.76 a 1 + +7.776[5

whereas the plastic formula [173] would change the coefficient from 0.76 to
o.64.

Swing times for a similar diaphragm not loaded by liquid on either
side and with equal pressures on the two faces can be obtained by setting
P, M 0 in [1711 and 1173]. Or, if there is liquid on both sides of the dia-
phragm, with densities p, and p. on the two sides, respectively, P1 is to be
replaced by p, + p, for the reason explained on page 79.

SECOND-ORDER EFFECTS IN REFLECTION
In linear or first-order acoustic theory, when either plane or

spherical waves fall upon a rigid wall, the boundary condition can be satis-
fied by assuming reflected waves which are the mirror image in the surface of
the incident waves. Thus even the afterflow part* of the particle velocity
in a spherical wave has equal and opposite components perpendicular to the
surface in the two waves, so that the resultant component in this direction
vanishes. The pressure on the surface due to the waves is exactly doubled
by reflection.

The case of large amplitudes can easily be investigated, for plane
waves at normal incidence, by the method of Riemann, which is explained in
Section 282 of Lamb's "Hydrodynamics" (23). It can be imagined that, in the
medium carrying the waves, values of the quantity Q u + p,c*v are propa-
gated forward without change, while values of S - - pC*v are at the same

* For the terminology, ase. 1 Report 480, page 39 (10).
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time propagated backward, where

P- (ooot 1761jY ap p
Po

in terms of the pressure p and the density p of the fluid; p is the density

and co the speed of sound for the undisturbed fluid, v is the particle veloc-

ity, and dp/dp is to be taken along an appropriate adiabatic. The velocities

of propagation of Q and S differ somewhat from co, but that is of no present

interest. Thus in the medium there exists a continuous array of values of Q

which are advancipg toward the reflecting surface, and another array of val-

ues of S which are moving backward. The local values of # and v at any point

are related to Q and S by the equations

I (Q+S), Po CoV  1 (Q- S) 177a, b)

22

As the incident wave advances, it meets zero values of S coming

from the undisturbed region ahead; hence in this wave, by [177a, b], U -pcov.

Similarly, in the reflected wave, as soon as it becomes distinct from the in-

cident wave, Q - 0 and u - - pocov. Thus, if subscripts i and r denote values

in the separate incident and reflected waves, respectively,

Mt - PoCov, - Q, , - - poov,. - S 1'78a, b]

S -Q
At the reflecting surface, v a 0; hence by 1177b]

which means that the arriving values of Q are continually being converted in-

to equal values of S, which are then propagated backward. Consequently, at

copresponding points on the reflected and incident waves S, a Q,, and, by

[178a, b], gi, p,, and also, since p and p vary together,

P - Pi

This is the usual law of reflection.

At the wall itself, however,
-1 (Q + S) - Q -,u - 2 [179]

2

where Qi Is the arriving value of Q and u, is the value of p at the corre-
sponding point in the incident wave. This equation represents the appropri-

ate generalization of the law that holds at the wall for infinitesimal waves,

namely, p - 2pi.

Now if the fluid obeyed Hookers law, the pressure p would be
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p2 p poo, i8oa, bI
goo

where V is the volume of unit mass and p., V. denote values when p a po;

s represents the strain and P.C.
2 the elasticity, since co = (elasticity/

density)i. More generally, p can be written as a series in powers of s:

P M Po + POCO2 s8 + b2
s2 + [181)

Since V - l/p. Vo 1/P0o

P&1-~ , d p dp _ p2  dp
d8 p0 dp

iRence from [1761

P POJ d da PC + Ub28 ld8

or, after expanding in powers of # and integrating.

21
lp--Pco a + l -b, ,..

Subtraction of [181] from this equation gives

P - b2s ...

Thus, if Hooke's law holds so that b2 and all higher coefficients

vanish, as in [180a], # - p - po, and [179] gives for the pressure on the

wall due to waves of any amplitude, p - p0 - 2 (pi - po), as for small waves.

If only terms through 82 are to be kept, s2 may conveniently be re-

placed by its value as found from the first three terms of [181]; then, as

far as terms in s ,

b- (p _ po)2 [182]

At the wall, [179] then gives, with [182],

b bP - PO-2- o(-)" 2(p - po) -  P2C (4 p)

or, since in the small quadratic term it is sufficiently accurate to write

P - Po - 2(p, - Po), 4

P -Po- 2(p 1 - po) + b2 (Pi - P0 )2  [183]
P02C0 13
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In dealing with water it is convenient to choose po 0 0. The adia-
batic for water that passes through a pressure of one atmosphere and a tem-

perature of 20 degrees centigrade is given by Penney and Dasgupta (24) as

v(p + 3)0.'86 = 1.666, where v is in cubic centimeters per gram and the unit
for p is I03 kilograms per square centimeter. With the help of the binomial

expansion and Equation [181] it is easily found that the equivalent series in

s, when p Is in pounds per square inch, is

p = 309000s (1 + 4.12s + 23.6s . ..

or, approximately, if a is replaced by p/309000 in the 82 term,

p 309000#a (1 + 75n) Pounds Per square inch [184]

Comparison with [181]. in which po is now 0, shows that po¢:-.309,000, b2 -

4.12paco = 1.273 x 106.

Hence [183] for the pressure on the wall may be written, for water,

when the incident pressure p, is in pounds per square inch, if po - 0,

p - 2pi ( + 10[1851
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